
pgloader Documentation
Release 3.6.8

Dimitri Fontaine

Sep 26, 2022

Table Of Contents:

1 Features Overview 3
1.1 Loading file content in PostgreSQL . 3
1.2 One-command migration to PostgreSQL . 4
1.3 Continuous Migration . 5

2 Indices and tables 79

i

ii

pgloader Documentation, Release 3.6.8

pgloader loads data from various sources into PostgreSQL. It can transform the data it reads on the fly and submit
raw SQL before and after the loading. It uses the COPY PostgreSQL protocol to stream the data into the server, and
manages errors by filling a pair of reject.dat and reject.log files.

Thanks to being able to load data directly from a database source, pgloader also supports from migrations from
other productions to PostgreSQL. In this mode of operations, pgloader handles both the schema and data parts of the
migration, in a single unmanned command, allowing to implement Continuous Migration.

Table Of Contents: 1

pgloader Documentation, Release 3.6.8

2 Table Of Contents:

CHAPTER 1

Features Overview

pgloader has two modes of operation: loading from files, migrating databases. In both cases, pgloader uses the
PostgreSQL COPY protocol which implements a streaming to send data in a very efficient way.

1.1 Loading file content in PostgreSQL

When loading from files, pgloader implements the following features:

Many source formats supported Support for a wide variety of file based formats are included in pgloader: the CSV
family, fixed columns formats, dBase files (db3), and IBM IXF files.

The SQLite database engine is accounted for in the next section: pgloader considers SQLite as a database source
and implements schema discovery from SQLite catalogs.

On the fly data transformation Often enough the data as read from a CSV file (or another format) needs some
tweaking and clean-up before being sent to PostgreSQL.

For instance in the geolite example we can see that integer values are being rewritten as IP address ranges,
allowing to target an ip4r column directly.

Full Field projections pgloader supports loading data into less fields than found on file, or more, doing some com-
putation on the data read before sending it to PostgreSQL.

Reading files from an archive Archive formats zip, tar, and gzip are supported by pgloader: the archive is extracted
in a temporary directly and expanded files are then loaded.

HTTP(S) support pgloader knows how to download a source file or a source archive using HTTP directly. It might be
better to use curl -O- http://... | pgloader and read the data from standard input, then allowing
for streaming of the data from its source down to PostgreSQL.

Target schema discovery When loading in an existing table, pgloader takes into account the existing columns and
may automatically guess the CSV format for you.

On error stop / On error resume next In some cases the source data is so damaged as to be impossible to migrate
in full, and when loading from a file then the default for pgloader is to use on error resume next option,
where the rows rejected by PostgreSQL are saved away and the migration continues with the other rows.

3

https://github.com/dimitri/pgloader/blob/master/test/archive.load

pgloader Documentation, Release 3.6.8

In other cases loading only a part of the input data might not be a great idea, and in such cases it’s possible to
use the on error stop option.

Pre/Post SQL commands This feature allows pgloader commands to include SQL commands to run before and after
loading a file. It might be about creating a table first, then loading the data into it, and then doing more processing
on-top of the data (implementing an ELT pipeline then), or creating specific indexes as soon as the data has been
made ready.

1.2 One-command migration to PostgreSQL

When migrating a full database in a single command, pgloader implements the following features:

One-command migration The whole migration is started with a single command line and then runs unattended.
pgloader is meant to be integrated in a fully automated tooling that you can repeat as many times as needed.

Schema discovery The source database is introspected using its SQL catalogs to get the list of tables, attributes (with
data types, default values, not null constraints, etc), primary key constraints, foreign key constraints, indexes,
comments, etc. This feeds an internal database catalog of all the objects to migrate from the source database to
the target database.

User defined casting rules Some source database have ideas about their data types that might not be compatible with
PostgreSQL implementaion of equivalent data types.

For instance, SQLite since version 3 has a Dynamic Type System which of course isn’t compatible with the idea
of a Relation. Or MySQL accepts datetime for year zero, which doesn’t exists in our calendar, and doesn’t have
a boolean data type.

When migrating from another source database technology to PostgreSQL, data type casting choices must be
made. pgloader implements solid defaults that you can rely upon, and a facility for user defined data type
casting rules for specific cases. The idea is to allow users to specify the how the migration should be done, in
order for it to be repeatable and included in a Continuous Migration process.

On the fly data transformations The user defined casting rules come with on the fly rewrite of the data. For instance
zero dates (it’s not just the year, MySQL accepts 0000-00-00 as a valid datetime) are rewritten to NULL
values by default.

Partial Migrations It is possible to include only a partial list of the source database tables in the migration, or to
exclude some of the tables on the source database.

Schema only, Data only This is the ORM compatibility feature of pgloader, where it is possible to create the schema
using your ORM and then have pgloader migrate the data targeting this already created schema.

When doing this, it is possible for pgloader to reindex the target schema: before loading the data from the source
database into PostgreSQL using COPY, pgloader DROPs the indexes and constraints, and reinstalls the exact
same definitions of them once the data has been loaded.

The reason for operating that way is of course data load performance.

Repeatable (DROP+CREATE) By default, pgloader issues DROP statements in the target PostgreSQL database
before issuing any CREATE statement, so that you can repeat the migration as many times as necessary until
migration specifications and rules are bug free.

The schedule the data migration to run every night (or even more often!) for the whole duration of the code
migration project. See the Continuous Migration methodology for more details about the approach.

On error stop / On error resume next The default behavior of pgloader when migrating from a database is on
error stop. The idea is to let the user fix either the migration specifications or the source data, and run
the process again, until it works.

4 Chapter 1. Features Overview

https://www.sqlite.org/datatype3.html
https://en.wikipedia.org/wiki/Relation_(database)
https://pgloader.io/blog/continuous-migration/

pgloader Documentation, Release 3.6.8

In some cases the source data is so damaged as to be impossible to migrate in full, and it might be necessary to
then resort to the on error resume next option, where the rows rejected by PostgreSQL are saved away
and the migration continues with the other rows.

Pre/Post SQL commands, Post-Schema SQL commands While pgloader takes care of rewriting the schema to
PostgreSQL expectations, and even provides user-defined data type casting rules support to that end, some-
times it is necessary to add some specific SQL commands around the migration. It’s of course supported right
from pgloader itself, without having to script around it.

Online ALTER schema At times migrating to PostgreSQL is also a good opportunity to review and fix bad decisions
that were made in the past, or simply that are not relevant to PostgreSQL.

The pgloader command syntax allows to ALTER pgloader’s internal representation of the target catalogs so
that the target schema can be created a little different from the source one. Changes supported include target a
different schema or table name.

Materialized Views, or schema rewrite on-the-fly In some cases the schema rewriting goes deeper than just renam-
ing the SQL objects to being a full normalization exercise. Because PostgreSQL is great at running a normalized
schema in production under most workloads.

pgloader implements full flexibility in on-the-fly schema rewriting, by making it possible to migrate from a view
definition. The view attribute list becomes a table definition in PostgreSQL, and the data is fetched by querying
the view on the source system.

A SQL view allows to implement both content filtering at the column level using the SELECT projection clause,
and at the row level using the WHERE restriction clause. And backfilling from reference tables thanks to JOINs.

Distribute to Citus When migrating from PostgreSQL to Citus, a important part of the process consists of adjusting
the schema to the distribution key. Read Preparing Tables and Ingesting Data in the Citus documentation for a
complete example showing how to do that.

When using pgloader it’s possible to specify the distribution keys and reference tables and let pgloader take care
of adjusting the table, indexes, primary keys and foreign key definitions all by itself.

Encoding Overrides MySQL doesn’t actually enforce the encoding of the data in the database to match the encoding
known in the metadata, defined at the database, table, or attribute level. Sometimes, it’s necessary to override
the metadata in order to make sense of the text, and pgloader makes it easy to do so.

1.3 Continuous Migration

pgloader is meant to migrate a whole database in a single command line and without any manual intervention. The
goal is to be able to setup a Continuous Integration environment as described in the Project Methodology document
of the MySQL to PostgreSQL webpage.

1. Setup your target PostgreSQL Architecture

2. Fork a Continuous Integration environment that uses PostgreSQL

3. Migrate the data over and over again every night, from production

4. As soon as the CI is all green using PostgreSQL, schedule the D-Day

5. Migrate without suprise and enjoy!

In order to be able to follow this great methodology, you need tooling to implement the third step in a fully automated
way. That’s pgloader.

1.3. Continuous Migration 5

https://docs.citusdata.com/en/v8.0/use_cases/multi_tenant.html
http://mysqltopgsql.com/project/
http://mysqltopgsql.com/project/

pgloader Documentation, Release 3.6.8

1.3.1 Introduction

pgloader loads data from various sources into PostgreSQL. It can transform the data it reads on the fly and submit
raw SQL before and after the loading. It uses the COPY PostgreSQL protocol to stream the data into the server, and
manages errors by filling a pair of reject.dat and reject.log files.

pgloader knows how to read data from different kind of sources:

• Files

– CSV

– Fixed Format

– DBF

• Databases

– SQLite

– MySQL

– MS SQL Server

– PostgreSQL

– Redshift

pgloader knows how to target different products using the PostgreSQL Protocol:

• PostgreSQL

• Citus

• Redshift

The level of automation provided by pgloader depends on the data source type. In the case of CSV and Fixed Format
files, a full description of the expected input properties must be given to pgloader. In the case of a database, pgloader
connects to the live service and knows how to fetch the metadata it needs directly from it.

Features Matrix

Here’s a comparison of the features supported depending on the source database engine. Some features that are not
supported can be added to pgloader, it’s just that nobody had the need to do so yet. Those features are marked with .
Empty cells are used when the feature doesn’t make sense for the selected source database.

6 Chapter 1. Features Overview

https://www.citusdata.com

pgloader Documentation, Release 3.6.8

Feature SQLite MySQL MS SQL PostgreSQL Redshift
One-command migration X X X X X
Continuous Migration X X X X X
Schema discovery X X X X X
Partial Migrations X X X X X
Schema only X X X X X
Data only X X X X X
Repeatable (DROP+CREATE) X X X X X
User defined casting rules X X X X X
Encoding Overrides X
On error stop X X X X X
On error resume next X X X X X
Pre/Post SQL commands X X X X X
Post-Schema SQL commands X X X X
Primary key support X X X X X
Foreign key support X X X X
Online ALTER schema X X X X X
Materialized views X X X X
Distribute to Citus X X X X

For more details about what the features are about, see the specific reference pages for your database source.

For some of the features, missing support only means that the feature is not needed for the other sources, such as the
capability to override MySQL encoding metadata about a table or a column. Only MySQL in this list is left completely
unable to guarantee text encoding. Or Redshift not having foreign keys.

Commands

pgloader implements its own Command Language, a DSL that allows to specify every aspect of the data load and
migration to implement. Some of the features provided in the language are only available for a specific source type.

Command Line

The pgloader command line accepts those two variants:

pgloader [<options>] [<command-file>]...
pgloader [<options>] SOURCE TARGET

Either you have a command-file containing migration specifications in the pgloader Command Language, or you can
give a Source for the data and a PostgreSQL database connection Target where to load the data into.

1.3.2 Pgloader Quick Start

In simple cases, pgloader is very easy to use.

CSV

Load data from a CSV file into a pre-existing table in your database:

1.3. Continuous Migration 7

pgloader Documentation, Release 3.6.8

pgloader --type csv \
--field id --field field \
--with truncate \
--with "fields terminated by ','" \
./test/data/matching-1.csv \
postgres:///pgloader?tablename=matching

In that example the whole loading is driven from the command line, bypassing the need for writing a command in the
pgloader command syntax entirely. As there’s no command though, the extra information needed must be provided on
the command line using the –type and –field and –with switches.

For documentation about the available syntaxes for the –field and –with switches, please refer to the CSV section later
in the man page.

Note also that the PostgreSQL URI includes the target tablename.

Reading from STDIN

File based pgloader sources can be loaded from the standard input, as in the following example:

pgloader --type csv \
--field "usps,geoid,aland,awater,aland_sqmi,awater_sqmi,intptlat,intptlong" \
--with "skip header = 1" \
--with "fields terminated by '\t'" \
- \
postgresql:///pgloader?districts_longlat \
< test/data/2013_Gaz_113CDs_national.txt

The dash (-) character as a source is used to mean standard input, as usual in Unix command lines. It’s possible to
stream compressed content to pgloader with this technique, using the Unix pipe:

gunzip -c source.gz | pgloader --type csv ... - pgsql:///target?foo

Loading from CSV available through HTTP

The same command as just above can also be run if the CSV file happens to be found on a remote HTTP location:

pgloader --type csv \
--field "usps,geoid,aland,awater,aland_sqmi,awater_sqmi,intptlat,intptlong" \
--with "skip header = 1" \
--with "fields terminated by '\t'" \
http://pgsql.tapoueh.org/temp/2013_Gaz_113CDs_national.txt \
postgresql:///pgloader?districts_longlat

Some more options have to be used in that case, as the file contains a one-line header (most commonly that’s column
names, could be a copyright notice). Also, in that case, we specify all the fields right into a single –field option
argument.

Again, the PostgreSQL target connection string must contain the tablename option and you have to ensure that the
target table exists and may fit the data. Here’s the SQL command used in that example in case you want to try it
yourself:

create table districts_longlat
(

usps text,

(continues on next page)

8 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

(continued from previous page)

geoid text,
aland bigint,
awater bigint,
aland_sqmi double precision,
awater_sqmi double precision,
intptlat double precision,
intptlong double precision

);

Also notice that the same command will work against an archived version of the same data.

Streaming CSV data from an HTTP compressed file

Finally, it’s important to note that pgloader first fetches the content from the HTTP URL it to a local file, then expand
the archive when it’s recognized to be one, and only then processes the locally expanded file.

In some cases, either because pgloader has no direct support for your archive format or maybe because expanding the
archive is not feasible in your environment, you might want to stream the content straight from its remote location into
PostgreSQL. Here’s how to do that, using the old battle tested Unix Pipes trick:

curl http://pgsql.tapoueh.org/temp/2013_Gaz_113CDs_national.txt.gz \
| gunzip -c \
| pgloader --type csv \

--field "usps,geoid,aland,awater,aland_sqmi,awater_sqmi,intptlat,intptlong"
--with "skip header = 1" \
--with "fields terminated by '\t'" \
- \
postgresql:///pgloader?districts_longlat

Now the OS will take care of the streaming and buffering between the network and the commands and pgloader will
take care of streaming the data down to PostgreSQL.

Migrating from SQLite

The following command will open the SQLite database, discover its tables definitions including indexes and foreign
keys, migrate those definitions while casting the data type specifications to their PostgreSQL equivalent and then
migrate the data over:

createdb newdb
pgloader ./test/sqlite/sqlite.db postgresql:///newdb

Migrating from MySQL

Just create a database where to host the MySQL data and definitions and have pgloader do the migration for you in a
single command line:

createdb pagila
pgloader mysql://user@localhost/sakila postgresql:///pagila

1.3. Continuous Migration 9

pgloader Documentation, Release 3.6.8

Fetching an archived DBF file from a HTTP remote location

It’s possible for pgloader to download a file from HTTP, unarchive it, and only then open it to discover the schema
then load the data:

createdb foo
pgloader --type dbf http://www.insee.fr/fr/methodes/nomenclatures/cog/telechargement/
→˓2013/dbf/historiq2013.zip postgresql:///foo

Here it’s not possible for pgloader to guess the kind of data source it’s being given, so it’s necessary to use the –type
command line switch.

1.3.3 Pgloader Tutorial

Loading CSV Data with pgloader

CSV means comma separated values and is often found with quite varying specifications. pgloader allows you to
describe those specs in its command.

The Command

To load data with pgloader you need to define in a command the operations in some details. Here’s our example for
loading CSV data:

LOAD CSV
FROM 'path/to/file.csv' (x, y, a, b, c, d)
INTO postgresql:///pgloader?csv (a, b, d, c)

WITH truncate,
skip header = 1,
fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ','

SET client_encoding to 'latin1',
work_mem to '12MB',
standard_conforming_strings to 'on'

BEFORE LOAD DO
$$ drop table if exists csv; $$,
$$ create table csv (

a bigint,
b bigint,
c char(2),
d text

);
$$;

The Data

This command allows loading the following CSV file content:

10 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

Header, with a © sign
"2.6.190.56","2.6.190.63","33996344","33996351","GB","United Kingdom"
"3.0.0.0","4.17.135.31","50331648","68257567","US","United States"
"4.17.135.32","4.17.135.63","68257568","68257599","CA","Canada"
"4.17.135.64","4.17.142.255","68257600","68259583","US","United States"
"4.17.143.0","4.17.143.15","68259584","68259599","CA","Canada"
"4.17.143.16","4.18.32.71","68259600","68296775","US","United States"

Loading the data

Here’s how to start loading the data. Note that the ouput here has been edited so as to facilitate its browsing online:

$ pgloader csv.load
... LOG Starting pgloader, log system is ready.
... LOG Parsing commands from file "/Users/dim/dev/pgloader/test/csv.load"

table name read imported errors time
----------------- --------- --------- --------- --------------

before load 2 2 0 0.039s
----------------- --------- --------- --------- --------------

csv 6 6 0 0.019s
----------------- --------- --------- --------- --------------
Total import time 6 6 0 0.058s

The result

As you can see, the command described above is filtering the input and only importing some of the columns from the
example data file. Here’s what gets loaded in the PostgreSQL database:

pgloader# table csv;
a | b | c | d

----------+----------+----+----------------
33996344 | 33996351 | GB | United Kingdom
50331648 | 68257567 | US | United States
68257568 | 68257599 | CA | Canada
68257600 | 68259583 | US | United States
68259584 | 68259599 | CA | Canada
68259600 | 68296775 | US | United States

(6 rows)

Loading Fixed Width Data File with pgloader

Some data providers still use a format where each column is specified with a starting index position and a given length.
Usually the columns are blank-padded when the data is shorter than the full reserved range.

The Command

To load data with pgloader you need to define in a command the operations in some details. Here’s our example for
loading Fixed Width Data, using a file provided by the US census.

You can find more files from them at the [Census 2000 Gazetteer Files](http://www.census.gov/geo/maps-data/data/
gazetteer2000.html).

1.3. Continuous Migration 11

http://www.census.gov/geo/maps-data/data/gazetteer2000.html
http://www.census.gov/geo/maps-data/data/gazetteer2000.html

pgloader Documentation, Release 3.6.8

Here’s our command:

LOAD ARCHIVE
FROM http://www2.census.gov/geo/docs/maps-data/data/gazetteer/places2k.zip
INTO postgresql:///pgloader

BEFORE LOAD DO
$$ drop table if exists places; $$,
$$ create table places

(
usps char(2) not null,
fips char(2) not null,
fips_code char(5),
loc_name varchar(64)

);
$$

LOAD FIXED
FROM FILENAME MATCHING ~/places2k.txt/

WITH ENCODING latin1
(

usps from 0 for 2,
fips from 2 for 2,
fips_code from 4 for 5,
"LocationName" from 9 for 64 [trim right whitespace],
p from 73 for 9,
h from 82 for 9,
land from 91 for 14,
water from 105 for 14,
ldm from 119 for 14,
wtm from 131 for 14,
lat from 143 for 10,
long from 153 for 11

)
INTO postgresql:///pgloader?places

(
usps, fips, fips_code, "LocationName"
);

The Data

This command allows loading the following file content, where we are only showing the first couple of lines:

AL0100124Abbeville city 2987
→˓ 1353 40301945 120383 15.560669 0.046480 31.566367 -85.251300
AL0100460Adamsville city 4965
→˓ 2042 50779330 14126 19.606010 0.005454 33.590411 -86.949166
AL0100484Addison town 723
→˓ 339 9101325 0 3.514041 0.000000 34.200042 -87.177851
AL0100676Akron town 521
→˓ 239 1436797 0 0.554750 0.000000 32.876425 -87.740978
AL0100820Alabaster city 22619
→˓ 8594 53023800 141711 20.472605 0.054715 33.231162 -86.823829
AL0100988Albertville city 17247
→˓ 7090 67212867 258738 25.951034 0.099899 34.265362 -86.211261
AL0101132Alexander City city 15008
→˓ 6855 100534344 433413 38.816529 0.167342 32.933157 -85.936008

12 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

Loading the data

Let’s start the pgloader command with our census-places.load command file:

$ pgloader census-places.load
... LOG Starting pgloader, log system is ready.
... LOG Parsing commands from file "/Users/dim/dev/pgloader/test/census-places.load"
... LOG Fetching 'http://www2.census.gov/geo/docs/maps-data/data/gazetteer/places2k.
→˓zip'
... LOG Extracting files from archive '//private/var/folders/w7/
→˓9n8v8pw54t1gngfff0lj16040000gn/T/pgloader//places2k.zip'

table name read imported errors time
----------------- --------- --------- --------- --------------

download 0 0 0 1.494s
extract 0 0 0 1.013s

before load 2 2 0 0.013s
----------------- --------- --------- --------- --------------

places 25375 25375 0 0.499s
----------------- --------- --------- --------- --------------
Total import time 25375 25375 0 3.019s

We can see that pgloader did download the file from its HTTP URL location then unziped it before the loading itself.

Note that the output of the command has been edited to facilitate its browsing online.

Loading MaxMind Geolite Data with pgloader

MaxMind provides a free dataset for geolocation, which is quite popular. Using pgloader you can download the lastest
version of it, extract the CSV files from the archive and load their content into your database directly.

The Command

To load data with pgloader you need to define in a command the operations in some details. Here’s our example for
loading the Geolite data:

/*
* Loading from a ZIP archive containing CSV files. The full test can be

* done with using the archive found at

* http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/GeoLiteCity-
→˓latest.zip

*
* And a very light version of this data set is found at

* http://pgsql.tapoueh.org/temp/foo.zip for quick testing.

*/

LOAD ARCHIVE
FROM http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/

→˓GeoLiteCity-latest.zip
INTO postgresql:///ip4r

BEFORE LOAD DO
$$ create extension if not exists ip4r; $$,
$$ create schema if not exists geolite; $$,
$$ create table if not exists geolite.location

(continues on next page)

1.3. Continuous Migration 13

http://www.maxmind.com/

pgloader Documentation, Release 3.6.8

(continued from previous page)

(
locid integer primary key,
country text,
region text,
city text,
postalcode text,
location point,
metrocode text,
areacode text

);
$$,
$$ create table if not exists geolite.blocks

(
iprange ip4r,
locid integer

);
$$,
$$ drop index if exists geolite.blocks_ip4r_idx; $$,
$$ truncate table geolite.blocks, geolite.location cascade; $$

LOAD CSV
FROM FILENAME MATCHING ~/GeoLiteCity-Location.csv/

WITH ENCODING iso-8859-1
(

locId,
country,
region null if blanks,
city null if blanks,
postalCode null if blanks,
latitude,
longitude,
metroCode null if blanks,
areaCode null if blanks

)
INTO postgresql:///ip4r?geolite.location

(
locid,country,region,city,postalCode,
location point using (format nil "(~a,~a)" longitude latitude),
metroCode,areaCode

)
WITH skip header = 2,

fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ','

AND LOAD CSV
FROM FILENAME MATCHING ~/GeoLiteCity-Blocks.csv/

WITH ENCODING iso-8859-1
(

startIpNum, endIpNum, locId
)

INTO postgresql:///ip4r?geolite.blocks
(

iprange ip4r using (ip-range startIpNum endIpNum),
locId

)
WITH skip header = 2,

(continues on next page)

14 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

(continued from previous page)

fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ','

FINALLY DO
$$ create index blocks_ip4r_idx on geolite.blocks using gist(iprange); $$;

Note that while the Geolite data is using a pair of integers (start, end) to represent ipv4 data, we use the very poweful
ip4r PostgreSQL Extension instead.

The transformation from a pair of integers into an IP is done dynamically by the pgloader process.

Also, the location is given as a pair of float columns for the longitude and the latitude where PostgreSQL offers the
point datatype, so the pgloader command here will actually transform the data on the fly to use the appropriate data
type and its input representation.

Loading the data

Here’s how to start loading the data. Note that the ouput here has been edited so as to facilitate its browsing online:

$ pgloader archive.load
... LOG Starting pgloader, log system is ready.
... LOG Parsing commands from file "/Users/dim/dev/pgloader/test/archive.load"
... LOG Fetching 'http://geolite.maxmind.com/download/geoip/database/GeoLiteCity_CSV/
→˓GeoLiteCity-latest.zip'
... LOG Extracting files from archive '//private/var/folders/w7/
→˓9n8v8pw54t1gngfff0lj16040000gn/T/pgloader//GeoLiteCity-latest.zip'

table name read imported errors time
----------------- --------- --------- --------- --------------

download 0 0 0 11.592s
extract 0 0 0 1.012s

before load 6 6 0 0.019s
----------------- --------- --------- --------- --------------
geolite.location 470387 470387 0 7.743s
geolite.blocks 1903155 1903155 0 16.332s

----------------- --------- --------- --------- --------------
finally 1 1 0 31.692s

----------------- --------- --------- --------- --------------
Total import time 2373542 2373542 0 1m8.390s

The timing of course includes the transformation of the 1.9 million pairs of integer into a single ipv4 range each. The
finally step consists of creating the GiST specialized index as given in the main command:

CREATE INDEX blocks_ip4r_idx ON geolite.blocks USING gist(iprange);

That index will then be used to speed up queries wanting to find which recorded geolocation contains a specific IP
address:

ip4r> select *
from geolite.location l

join geolite.blocks b using(locid)
where iprange >>= '8.8.8.8';

-[RECORD 1]------------------

(continues on next page)

1.3. Continuous Migration 15

https://github.com/RhodiumToad/ip4r
http://www.postgresql.org/docs/9.3/interactive/functions-geometry.html

pgloader Documentation, Release 3.6.8

(continued from previous page)

locid | 223
country | US
region |
city |
postalcode |
location | (-97,38)
metrocode |
areacode |
iprange | 8.8.8.8-8.8.37.255

Time: 0.747 ms

Loading dBase files with pgloader

The dBase format is still in use in some places as modern tools such as Filemaker and Excel offer some level of support
for it. Speaking of support in modern tools, pgloader is right there on the list too!

The Command

To load data with pgloader you need to define in a command the operations in some details. Here’s our example for
loading a dBase file, using a file provided by the french administration.

You can find more files from them at the Insee website.

Here’s our command:

LOAD DBF
FROM http://www.insee.fr/fr/methodes/nomenclatures/cog/telechargement/2013/dbf/

→˓historiq2013.zip
INTO postgresql:///pgloader
WITH truncate, create table
SET client_encoding TO 'latin1';

Note that here pgloader will benefit from the meta-data information found in the dBase file to create a PostgreSQL
table capable of hosting the data as described, then load the data.

Loading the data

Let’s start the pgloader command with our dbf-zip.load command file:

$ pgloader dbf-zip.load
... LOG Starting pgloader, log system is ready.
... LOG Parsing commands from file "/Users/dim/dev/pgloader/test/dbf-zip.load"
... LOG Fetching 'http://www.insee.fr/fr/methodes/nomenclatures/cog/telechargement/
→˓2013/dbf/historiq2013.zip'
... LOG Extracting files from archive '//private/var/folders/w7/
→˓9n8v8pw54t1gngfff0lj16040000gn/T/pgloader//historiq2013.zip'

table name read imported errors time
----------------- --------- --------- --------- --------------

download 0 0 0 0.167s
extract 0 0 0 1.010s

create, truncate 0 0 0 0.071s

(continues on next page)

16 Chapter 1. Features Overview

http://www.insee.fr/fr/methodes/nomenclatures/cog/telechargement.asp

pgloader Documentation, Release 3.6.8

(continued from previous page)

----------------- --------- --------- --------- --------------
historiq2013 9181 9181 0 0.658s

----------------- --------- --------- --------- --------------
Total import time 9181 9181 0 1.906s

We can see that pgloader did download the file from its HTTP URL location then unziped it before the loading itself.

Note that the output of the command has been edited to facilitate its browsing online.

Loading SQLite files with pgloader

The SQLite database is a respected solution to manage your data with. Its embeded nature makes it a source of
migrations when a projects now needs to handle more concurrency, which PostgreSQL is very good at. pgloader can
help you there.

In a Single Command Line

You can

$ createdb chinook
$ pgloader https://github.com/lerocha/chinook-database/raw/master/ChinookDatabase/
→˓DataSources/Chinook_Sqlite_AutoIncrementPKs.sqlite pgsql:///chinook

Done! All with the schema, data, constraints, primary keys and foreign keys, etc. We also see an error with the Chinook
schema that contains several primary key definitions against the same table, which is not accepted by PostgreSQL:

2017-06-20T16:18:59.019000+02:00 LOG Data errors in '/private/tmp/pgloader/'
2017-06-20T16:18:59.236000+02:00 LOG Fetching 'https://github.com/lerocha/chinook-
→˓database/raw/master/ChinookDatabase/DataSources/Chinook_Sqlite_AutoIncrementPKs.
→˓sqlite'
2017-06-20T16:19:00.664000+02:00 ERROR Database error 42P16: multiple primary keys
→˓for table "playlisttrack" are not allowed
QUERY: ALTER TABLE playlisttrack ADD PRIMARY KEY USING INDEX idx_66873_sqlite_
→˓autoindex_playlisttrack_1;
2017-06-20T16:19:00.665000+02:00 LOG report summary reset

table name read imported errors total time
----------------------- --------- --------- --------- --------------

fetch 0 0 0 0.877s
fetch meta data 33 33 0 0.033s
Create Schemas 0 0 0 0.003s

Create SQL Types 0 0 0 0.006s
Create tables 22 22 0 0.043s

Set Table OIDs 11 11 0 0.012s
----------------------- --------- --------- --------- --------------

album 347 347 0 0.023s
artist 275 275 0 0.023s

customer 59 59 0 0.021s
employee 8 8 0 0.018s
invoice 412 412 0 0.031s
genre 25 25 0 0.021s

invoiceline 2240 2240 0 0.034s
mediatype 5 5 0 0.025s

playlisttrack 8715 8715 0 0.040s
playlist 18 18 0 0.016s

(continues on next page)

1.3. Continuous Migration 17

http://pgloader.io
http://www.postgresql.org/

pgloader Documentation, Release 3.6.8

(continued from previous page)

track 3503 3503 0 0.111s
----------------------- --------- --------- --------- --------------
COPY Threads Completion 33 33 0 0.313s

Create Indexes 22 22 0 0.160s
Index Build Completion 22 22 0 0.027s

Reset Sequences 0 0 0 0.017s
Primary Keys 12 0 1 0.013s

Create Foreign Keys 11 11 0 0.040s
Create Triggers 0 0 0 0.000s

Install Comments 0 0 0 0.000s
----------------------- --------- --------- --------- --------------

Total import time 15607 15607 0 1.669s

You may need to have special cases to take care of tho. In advanced case you can use the pgloader command.

The Command

To load data with pgloader you need to define in a command the operations in some details. Here’s our command:

load database
from 'sqlite/Chinook_Sqlite_AutoIncrementPKs.sqlite'
into postgresql:///pgloader

with include drop, create tables, create indexes, reset sequences

set work_mem to '16MB', maintenance_work_mem to '512 MB';

Note that here pgloader will benefit from the meta-data information found in the SQLite file to create a PostgreSQL
database capable of hosting the data as described, then load the data.

Loading the data

Let’s start the pgloader command with our sqlite.load command file:

$ pgloader sqlite.load
... LOG Starting pgloader, log system is ready.
... LOG Parsing commands from file "/Users/dim/dev/pgloader/test/sqlite.load"
... WARNING Postgres warning: table "album" does not exist, skipping
... WARNING Postgres warning: table "artist" does not exist, skipping
... WARNING Postgres warning: table "customer" does not exist, skipping
... WARNING Postgres warning: table "employee" does not exist, skipping
... WARNING Postgres warning: table "genre" does not exist, skipping
... WARNING Postgres warning: table "invoice" does not exist, skipping
... WARNING Postgres warning: table "invoiceline" does not exist, skipping
... WARNING Postgres warning: table "mediatype" does not exist, skipping
... WARNING Postgres warning: table "playlist" does not exist, skipping
... WARNING Postgres warning: table "playlisttrack" does not exist, skipping
... WARNING Postgres warning: table "track" does not exist, skipping

table name read imported errors time
---------------------- --------- --------- --------- --------------

create, truncate 0 0 0 0.052s
Album 347 347 0 0.070s

Artist 275 275 0 0.014s
Customer 59 59 0 0.014s

(continues on next page)

18 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

(continued from previous page)

Employee 8 8 0 0.012s
Genre 25 25 0 0.018s

Invoice 412 412 0 0.032s
InvoiceLine 2240 2240 0 0.077s
MediaType 5 5 0 0.012s
Playlist 18 18 0 0.008s

PlaylistTrack 8715 8715 0 0.071s
Track 3503 3503 0 0.105s

index build completion 0 0 0 0.000s
---------------------- --------- --------- --------- --------------

Create Indexes 20 20 0 0.279s
reset sequences 0 0 0 0.043s

---------------------- --------- --------- --------- --------------
Total streaming time 15607 15607 0 0.476s

We can see that pgloader did download the file from its HTTP URL location then unziped it before loading it.

Also, the WARNING messages we see here are expected as the PostgreSQL database is empty when running the
command, and pgloader is using the SQL commands DROP TABLE IF EXISTS when the given command uses the
include drop option.

Note that the output of the command has been edited to facilitate its browsing online.

Migrating from MySQL to PostgreSQL

If you want to migrate your data over to PostgreSQL from MySQL then pgloader is the tool of choice!

Most tools around are skipping the main problem with migrating from MySQL, which is to do with the type casting
and data sanitizing that needs to be done. pgloader will not leave you alone on those topics.

In a Single Command Line

As an example, we will use the f1db database from <http://ergast.com/mrd/> which which provides a historical record
of motor racing data for non-commercial purposes. You can either use their API or download the whole database at
http://ergast.com/downloads/f1db.sql.gz. Once you’ve done that load the database in MySQL:

$ mysql -u root
> create database f1db;
> source f1db.sql

Now let’s migrate this database into PostgreSQL in a single command line:

$ createdb f1db
$ pgloader mysql://root@localhost/f1db pgsql:///f1db

Done! All with schema, table definitions, constraints, indexes, primary keys, auto_increment columns turned into
bigserial , foreign keys, comments, and if you had some MySQL default values such as ON UPDATE CUR-
RENT_TIMESTAMP they would have been translated to a PostgreSQL before update trigger automatically.

$ pgloader mysql://root@localhost/f1db pgsql:///f1db
2017-06-16T08:56:14.064000+02:00 LOG Main logs in '/private/tmp/pgloader/pgloader.log'
2017-06-16T08:56:14.068000+02:00 LOG Data errors in '/private/tmp/pgloader/'
2017-06-16T08:56:19.542000+02:00 LOG report summary reset

table name read imported errors total time

(continues on next page)

1.3. Continuous Migration 19

http://pgloader.io
http://www.postgresql.org
http://ergast.com/mrd/
http://ergast.com/downloads/f1db.sql.gz
https://www.postgresql.org/docs/current/static/plpgsql-trigger.html

pgloader Documentation, Release 3.6.8

(continued from previous page)

------------------------- --------- --------- --------- --------------
fetch meta data 33 33 0 0.365s
Create Schemas 0 0 0 0.007s

Create SQL Types 0 0 0 0.006s
Create tables 26 26 0 0.068s

Set Table OIDs 13 13 0 0.012s
------------------------- --------- --------- --------- --------------

f1db.constructorresults 11011 11011 0 0.205s
f1db.circuits 73 73 0 0.150s

f1db.constructors 208 208 0 0.059s
f1db.constructorstandings 11766 11766 0 0.365s

f1db.drivers 841 841 0 0.268s
f1db.laptimes 413578 413578 0 2.892s

f1db.driverstandings 31420 31420 0 0.583s
f1db.pitstops 5796 5796 0 2.154s

f1db.races 976 976 0 0.227s
f1db.qualifying 7257 7257 0 0.228s

f1db.seasons 68 68 0 0.527s
f1db.results 23514 23514 0 0.658s
f1db.status 133 133 0 0.130s

------------------------- --------- --------- --------- --------------
COPY Threads Completion 39 39 0 4.303s

Create Indexes 20 20 0 1.497s
Index Build Completion 20 20 0 0.214s

Reset Sequences 0 10 0 0.058s
Primary Keys 13 13 0 0.012s

Create Foreign Keys 0 0 0 0.000s
Create Triggers 0 0 0 0.001s

Install Comments 0 0 0 0.000s
------------------------- --------- --------- --------- --------------

Total import time 506641 506641 0 5.547s

You may need to have special cases to take care of tho, or views that you want to materialize while doing the migration.
In advanced case you can use the pgloader command.

The Command

To load data with pgloader you need to define in a command the operations in some details. Here’s our example for
loading the MySQL Sakila Sample Database.

Here’s our command:

load database
from mysql://root@localhost/sakila
into postgresql:///sakila

WITH include drop, create tables, no truncate,
create indexes, reset sequences, foreign keys

SET maintenance_work_mem to '128MB', work_mem to '12MB', search_path to 'sakila'

CAST type datetime to timestamptz
drop default drop not null using zero-dates-to-null,

type date drop not null drop default using zero-dates-to-null

(continues on next page)

20 Chapter 1. Features Overview

http://dev.mysql.com/doc/sakila/en/

pgloader Documentation, Release 3.6.8

(continued from previous page)

MATERIALIZE VIEWS film_list, staff_list

-- INCLUDING ONLY TABLE NAMES MATCHING ~/film/, 'actor'
-- EXCLUDING TABLE NAMES MATCHING ~<ory>

BEFORE LOAD DO
$$ create schema if not exists sakila; $$;

Note that here pgloader will benefit from the meta-data information found in the MySQL database to create a Post-
greSQL database capable of hosting the data as described, then load the data.

In particular, some specific casting rules are given here, to cope with date values such as 0000-00-00 that MySQL
allows and PostgreSQL rejects for not existing in our calendar. It’s possible to add per-column casting rules too,
which is useful is some of your tinyint are in fact smallint while some others are in fact boolean values.

Finaly note that we are using the MATERIALIZE VIEWS clause of pgloader: the selected views here will be migrated
over to PostgreSQL with their contents.

It’s possible to use the MATERIALIZE VIEWS clause and give both the name and the SQL (in MySQL dialect) defini-
tion of view, then pgloader creates the view before loading the data, then drops it again at the end.

Loading the data

Let’s start the pgloader command with our sakila.load command file:

$ pgloader sakila.load
... LOG Starting pgloader, log system is ready.
... LOG Parsing commands from file "/Users/dim/dev/pgloader/test/sakila.load"

<WARNING: table "xxx" does not exists have been edited away>

table name read imported errors time
---------------------- --------- --------- --------- --------------

before load 1 1 0 0.007s
fetch meta data 45 45 0 0.402s

create, drop 0 36 0 0.208s
---------------------- --------- --------- --------- --------------

actor 200 200 0 0.071s
address 603 603 0 0.035s

category 16 16 0 0.018s
city 600 600 0 0.037s

country 109 109 0 0.023s
customer 599 599 0 0.073s

film 1000 1000 0 0.135s
film_actor 5462 5462 0 0.236s

film_category 1000 1000 0 0.070s
film_text 1000 1000 0 0.080s
inventory 4581 4581 0 0.136s
language 6 6 0 0.036s
payment 16049 16049 0 0.539s
rental 16044 16044 0 0.648s
staff 2 2 0 0.041s
store 2 2 0 0.036s

film_list 997 997 0 0.247s
staff_list 2 2 0 0.135s

Index Build Completion 0 0 0 0.000s
---------------------- --------- --------- --------- --------------

(continues on next page)

1.3. Continuous Migration 21

pgloader Documentation, Release 3.6.8

(continued from previous page)

Create Indexes 41 41 0 0.964s
Reset Sequences 0 1 0 0.035s

Foreign Keys 22 22 0 0.254s
---------------------- --------- --------- --------- --------------

Total import time 48272 48272 0 3.502s

The WARNING messages we see here are expected as the PostgreSQL database is empty when running the command,
and pgloader is using the SQL commands DROP TABLE IF EXISTS when the given command uses the include drop
option.

Note that the output of the command has been edited to facilitate its browsing online.

1.3.4 Installing pgloader

Several distributions are available for pgcopydb.

debian packages

You can install pgloader directly from apt.postgresql.org and from official debian repositories, see pack-
ages.debian.org/pgloader.

$ apt-get install pgloader

RPM packages

The Postgres community repository for RPM packages is yum.postgresql.org and does include binary packages for
pgloader.

Docker Images

Docker images are maintained for each tagged release at dockerhub, and also built from the CI/CD integration on
GitHub at each commit to the main branch.

The DockerHub dimitri/pgloader repository is where the tagged releases are made available. The image uses the
Postgres version currently in debian stable.

To use the dimitri/pgloader docker image:

$ docker run --rm -it dimitri/pgloader:latest pgloader --version

Or you can use the CI/CD integration that publishes packages from the main branch to the GitHub docker repository:

$ docker pull ghcr.io/dimitri/pgloader:latest
$ docker run --rm -it ghcr.io/dimitri/pgloader:latest pgloader --version
$ docker run --rm -it ghcr.io/dimitri/pgloader:latest pgloader --help

Build from sources

pgloader is a Common Lisp program, tested using the SBCL (>= 1.2.5) and Clozure CL implementations and with
Quicklisp to fetch build dependencies.

22 Chapter 1. Features Overview

https://wiki.postgresql.org/wiki/Apt
https://packages.debian.org/search?keywords=pgloader
https://packages.debian.org/search?keywords=pgloader
https://yum.postgresql.org
https://hub.docker.com/r/dimitri/pgloader
http://sbcl.org/
http://ccl.clozure.com/
http://www.quicklisp.org/beta/

pgloader Documentation, Release 3.6.8

When building from sources, you should always build from the current git HEAD as it’s basically the only source that
is managed in a way to ensure it builds aginst current set of dependencies versions.

The build system for pgloader uses a Makefile and the Quicklisp Common Lisp packages distribution system.

The modern build system for pgloader is entirely written in Common Lisp, where the historical name for our operation
is save-lisp-and-die and can be used that way:

$ make save

The legacy build system also uses Buildapp and can be used that way:

$ make pgloader

Building from sources on debian

Install the build dependencies first, then use the Makefile:

$ apt-get install sbcl unzip libsqlite3-dev make curl gawk freetds-dev libzip-dev
$ cd /path/to/pgloader

$ make save
$./build/bin/pgloader --help

Building from sources on RedHat/CentOS

To build and install pgloader the Steel Bank Common Lisp package (sbcl) from EPEL, and the freetds packages are
required.

It is recommended to build the RPM yourself, see below, to ensure that all installed files are properly tracked and that
you can safely update to newer versions of pgloader as they’re released.

To do an adhoc build and install run boostrap-centos.sh for CentOS 6 or bootstrap-centos7.sh for
CentOS 7 to install the required dependencies.

Building a pgloader RPM from sources

The spec file in the root of the pgloader repository can be used to build your own RPM. For production deployments
it is recommended that you build this RPM on a dedicated build box and then copy the RPM to your production
environment for use; it is considered bad practice to have compilers and build tools present in production environments.

1. Install the [EPEL repo](https://fedoraproject.org/wiki/EPEL#Quickstart).

2. Install rpmbuild dependencies:

sudo yum -y install yum-utils rpmdevtools @"Development Tools"

3. Install pgloader build dependencies:

sudo yum-builddep pgloader.spec

4. Download pgloader source:

spectool -g -R pgloader.spec

1.3. Continuous Migration 23

https://fedoraproject.org/wiki/EPEL#Quickstart

pgloader Documentation, Release 3.6.8

5. Build the source and binary RPMs (see rpmbuild –help for other build options):

rpmbuild -ba pgloader.spec

Building from sources on macOS

We suppose you already have git and make available, if that’s not the case now is the time to install those tools. The
SQLite lib that comes in MacOSX is fine, no need for extra software here.

You will need to install either SBCL or CCL separately, and when using [brew](http://brew.sh/) it’s as simple as:

$ brew install sbcl
$ brew install clozure-cl

NOTE: Make sure you installed the universal binaries of Freetds, so that they can be loaded correctly.

$ brew install freetds --universal --build-from-source

Then use the normal build system for pgloader:

$ make save
$./build/bin/pgloader --version

Building from sources on Windows

Building pgloader on Windows is supported (in theory), thanks to Common Lisp implementations being available on
that platform, and to the Common Lisp Standard for making it easy to write actually portable code.

It is recommended to have a look at the issues labelled with Windows support if you run into trouble when building
pgloader, because the development team is lacking windows user and in practice we can’t maintain the support for that
Operating System:

If you need pgloader.exe on windows please condider contributing fixes for that environment and maybe longer
term support then. Specifically, a CI integration with a windows build host would allow ensuring that we continue to
support that target.

Building Docker image from sources

You can build a Docker image from source using SBCL by default:

$ docker build .

Or Clozure CL (CCL):

$ docker build -f Dockerfile.ccl .

More options when building from source

The Makefile target save knows how to produce a Self Contained Binary file for pgloader, found at ./build/
bin/pgloader:

24 Chapter 1. Features Overview

http://brew.sh/
https://github.com/dimitri/pgloader/issues?utf8=\protect \relax $\protect \unhbox \voidb@x \hbox {$\mathsurround \z@ \mathchar "458$}\protect \relax \protect \begingroup \immediate \write \@unused \def \MessageBreak
 \let \protect \edef Your command was ignored.\MessageBreak Type I <command> <return> to replace it with another command,\MessageBreak or <return> to continue without it. \errhelp \let \def \MessageBreak
 \def \errmessage LaTeX Error: Bad math environment delimiter.

See the LaTeX manual or LaTeX Companion for explanation.
Type H <return> for immediate help \endgroup &q=label%3A%22Windows%20support%22%20\T1\textgreater {}

pgloader Documentation, Release 3.6.8

$ make save

By default, the Makefile uses SBCL to compile your binary image, though it’s possible to build using Clozure-CL.

$ make CL=ccl64 save

It is possible to to tweak the default amount of memory that the pgloader image will allow itself using when running
through your data (don’t ask for more than your current RAM tho). At the moment only the legacy build system
includes support for this custom build:

$ make DYNSIZE=8192 pgloader

The make pgloader command when successful outputs a ./build/bin/pgloader file for you to use.

1.3.5 PgLoader Reference Manual

pgloader loads data from various sources into PostgreSQL. It can transform the data it reads on the fly and submit
raw SQL before and after the loading. It uses the COPY PostgreSQL protocol to stream the data into the server, and
manages errors by filling a pair of reject.dat and reject.log files.

pgloader operates either using commands which are read from files:

pgloader commands.load

or by using arguments and options all provided on the command line:

pgloader SOURCE TARGET

Arguments

The pgloader arguments can be as many load files as needed, or a couple of connection strings to a specific input file.

Source Connection String

The source connection string format is as follows:

format:///absolute/path/to/file.ext
format://./relative/path/to/file.ext

Where format might be one of csv, fixed, copy, dbf, db3 or ixf.:

db://user:pass@host:port/dbname

Where db might be of sqlite, mysql or mssql.

When using a file based source format, pgloader also support natively fetching the file from an http location and
decompressing an archive if needed. In that case it’s necessary to use the –type option to specify the expected format
of the file. See the examples below.

Also note that some file formats require describing some implementation details such as columns to be read and
delimiters and quoting when loading from csv.

For more complex loading scenarios, you will need to write a full fledge load command in the syntax described later
in this document.

1.3. Continuous Migration 25

http://sbcl.org/
http://ccl.clozure.com/

pgloader Documentation, Release 3.6.8

Target Connection String

The target connection string format is described in details later in this document, see Section Connection String.

Options

Inquiry Options

Use these options when you want to know more about how to use pgloader, as those options will cause pgloader not
to load any data.

• -h, –help

Show command usage summary and exit.

• -V, –version

Show pgloader version string and exit.

• -E, –list-encodings

List known encodings in this version of pgloader.

• -U, –upgrade-config

Parse given files in the command line as pgloader.conf files with the INI syntax that was in use in pgloader
versions 2.x, and output the new command syntax for pgloader on standard output.

General Options

Those options are meant to tweak pgloader behavior when loading data.

• -v, –verbose

Be verbose.

• -q, –quiet

Be quiet.

• -d, –debug

Show debug level information messages.

• -D, –root-dir

Set the root working directory (default to “/tmp/pgloader”).

• -L, –logfile

Set the pgloader log file (default to “/tmp/pgloader/pgloader.log”).

• –log-min-messages

Minimum level of verbosity needed for log message to make it to the logfile. One of critical, log, error, warning,
notice, info or debug.

• –client-min-messages

Minimum level of verbosity needed for log message to make it to the console. One of critical, log, error, warning,
notice, info or debug.

26 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

• -S, –summary

A filename where to copy the summary output. When relative, the filename is expanded into *root-dir*.

The format of the filename defaults to being human readable. It is possible to have the output in machine
friendly formats such as CSV, COPY (PostgreSQL’s own COPY format) or JSON by specifying a filename with
the extension resp. .csv, .copy or .json.

• -l <file>, –load-lisp-file <file>

Specify a lisp <file> to compile and load into the pgloader image before reading the commands, allowing to
define extra transformation function. Those functions should be defined in the pgloader.transforms package.
This option can appear more than once in the command line.

• –dry-run

Allow testing a .load file without actually trying to load any data. It’s useful to debug it until it’s ok, in particular
to fix connection strings.

• –on-error-stop

Alter pgloader behavior: rather than trying to be smart about error handling and continue loading good data,
separating away the bad one, just stop as soon as PostgreSQL refuses anything sent to it. Useful to debug data
processing, transformation function and specific type casting.

• –self-upgrade <directory>

Specify a <directory> where to find pgloader sources so that one of the very first things it does is dynamically
loading-in (and compiling to machine code) another version of itself, usually a newer one like a very recent git
checkout.

• –no-ssl-cert-verification

Uses the OpenSSL option to accept a locally issued server-side certificate, avoiding the following error message:

SSL verify error: 20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY

The right way to fix the SSL issue is to use a trusted certificate, of course. Sometimes though it’s useful to
make progress with the pgloader setup while the certificate chain of trust is being fixed, maybe by another team.
That’s when this option is useful.

Command Line Only Operations

Those options are meant to be used when using pgloader from the command line only, rather than using a command
file and the rich command clauses and parser. In simple cases, it can be much easier to use the SOURCE and TARGET
directly on the command line, then tweak the loading with those options:

• –with “option”

Allows setting options from the command line. You can use that option as many times as you want. The option
arguments must follow the WITH clause for the source type of the SOURCE specification, as described later in
this document.

• –set “guc_name=’value’”

Allows setting PostgreSQL configuration from the command line. Note that the option parsing is the same as
when used from the SET command clause, in particular you must enclose the guc value with single-quotes.

• –field “. . . ”

1.3. Continuous Migration 27

pgloader Documentation, Release 3.6.8

Allows setting a source field definition. Fields are accumulated in the order given on the command line. It’s
possible to either use a –field option per field in the source file, or to separate field definitions by a comma, as
you would do in the HAVING FIELDS clause.

• –cast “. . . ”

Allows setting a specific casting rule for loading the data.

• –type csv|fixed|db3|ixf|sqlite|mysql|mssql

Allows forcing the source type, in case when the SOURCE parsing isn’t satisfying.

• –encoding <encoding>

Set the encoding of the source file to load data from.

• –before <filename>

Parse given filename for SQL queries and run them against the target database before loading the data from the
source. The queries are parsed by pgloader itself: they need to be terminated by a semi-colon (;) and the file
may include i or ir commands to include another file.

• –after <filename>

Parse given filename for SQL queries and run them against the target database after having loaded the data from
the source. The queries are parsed in the same way as with the –before option, see above.

More Debug Information

To get the maximum amount of debug information, you can use both the –verbose and the –debug switches at the
same time, which is equivalent to saying –client-min-messages data. Then the log messages will show the data being
processed, in the cases where the code has explicit support for it.

Batches And Retry Behaviour

To load data to PostgreSQL, pgloader uses the COPY streaming protocol. While this is the faster way to load data,
COPY has an important drawback: as soon as PostgreSQL emits an error with any bit of data sent to it, whatever the
problem is, the whole data set is rejected by PostgreSQL.

To work around that, pgloader cuts the data into batches of 25000 rows each, so that when a problem occurs it’s only
impacting that many rows of data. Each batch is kept in memory while the COPY streaming happens, in order to be
able to handle errors should some happen.

When PostgreSQL rejects the whole batch, pgloader logs the error message then isolates the bad row(s) from the
accepted ones by retrying the batched rows in smaller batches. To do that, pgloader parses the CONTEXT error
message from the failed COPY, as the message contains the line number where the error was found in the batch, as in
the following example:

CONTEXT: COPY errors, line 3, column b: "2006-13-11"

Using that information, pgloader will reload all rows in the batch before the erroneous one, log the erroneous one as
rejected, then try loading the remaining of the batch in a single attempt, which may or may not contain other erroneous
data.

At the end of a load containing rejected rows, you will find two files in the root-dir location, under a directory named
the same as the target database of your setup. The filenames are the target table, and their extensions are .dat for the
rejected data and .log for the file containing the full PostgreSQL client side logs about the rejected data.

The .dat file is formatted in PostgreSQL the text COPY format as documented in
http://www.postgresql.org/docs/9.2/static/sql-copy.html#AEN66609.

28 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

It is possible to use the following WITH options to control pgloader batch behavior:

• on error stop, on error resume next

This option controls if pgloader is using building batches of data at all. The batch implementation allows
pgloader to recover errors by sending the data that PostgreSQL accepts again, and by keeping away the data that
PostgreSQL rejects.

To enable retrying the data and loading the good parts, use the option on error resume next, which is the default
to file based data loads (such as CSV, IXF or DBF).

When migrating from another RDMBS technology, it’s best to have a reproducible loading process. In that case
it’s possible to use on error stop and fix either the casting rules, the data transformation functions or in cases
the input data until your migration runs through completion. That’s why on error resume next is the default for
SQLite, MySQL and MS SQL source kinds.

A Note About Performance

pgloader has been developed with performance in mind, to be able to cope with ever growing needs in loading large
amounts of data into PostgreSQL.

The basic architecture it uses is the old Unix pipe model, where a thread is responsible for loading the data (reading
a CSV file, querying MySQL, etc) and fills pre-processed data into a queue. Another threads feeds from the queue,
apply some more transformations to the input data and stream the end result to PostgreSQL using the COPY protocol.

When given a file that the PostgreSQL COPY command knows how to parse, and if the file contains no erroneous
data, then pgloader will never be as fast as just using the PostgreSQL COPY command.

Note that while the COPY command is restricted to read either from its standard input or from a local file on the
server’s file system, the command line tool psql implements a copy command that knows how to stream a file local to
the client over the network and into the PostgreSQL server, using the same protocol as pgloader uses.

A Note About Parallelism

pgloader uses several concurrent tasks to process the data being loaded:

• a reader task reads the data in and pushes it to a queue,

• at last one write task feeds from the queue and formats the raw into the PostgreSQL COPY format in batches
(so that it’s possible to then retry a failed batch without reading the data from source again), and then sends the
data to PostgreSQL using the COPY protocol.

The parameter workers allows to control how many worker threads are allowed to be active at any time (that’s the
parallelism level); and the parameter concurrency allows to control how many tasks are started to handle the data (they
may not all run at the same time, depending on the workers setting).

We allow workers simultaneous workers to be active at the same time in the context of a single table. A single unit of
work consist of several kinds of workers:

• a reader getting raw data from the source,

• N writers preparing and sending the data down to PostgreSQL.

The N here is setup to the concurrency parameter: with a CONCURRENCY of 2, we start (+ 1 2) = 3 concurrent tasks,
with a concurrency of 4 we start (+ 1 4) = 5 concurrent tasks, of which only workers may be active simultaneously.

The defaults are workers = 4, concurrency = 1 when loading from a database source, and workers = 8, concurrency
= 2 when loading from something else (currently, a file). Those defaults are arbitrary and waiting for feedback from
users, so please consider providing feedback if you play with the settings.

1.3. Continuous Migration 29

pgloader Documentation, Release 3.6.8

As the CREATE INDEX threads started by pgloader are only waiting until PostgreSQL is done with the real work,
those threads are NOT counted into the concurrency levels as detailed here.

By default, as many CREATE INDEX threads as the maximum number of indexes per table are found in your source
schema. It is possible to set the max parallel create index WITH option to another number in case there’s just too many
of them to create.

Source Formats

pgloader supports the following input formats:

• csv, which includes also tsv and other common variants where you can change the separator and the quoting
rules and how to escape the quotes themselves;

• fixed columns file, where pgloader is flexible enough to accomodate with source files missing columns (ragged
fixed length column files do exist);

• PostgreSLQ COPY formatted files, following the COPY TEXT documentation of PostgreSQL, such as the reject
files prepared by pgloader;

• dbase files known as db3 or dbf file;

• ixf formated files, ixf being a binary storage format from IBM;

• sqlite databases with fully automated discovery of the schema and advanced cast rules;

• mysql databases with fully automated discovery of the schema and advanced cast rules;

• MS SQL databases with fully automated discovery of the schema and advanced cast rules.

Pgloader Commands Syntax

pgloader implements a Domain Specific Language allowing to setup complex data loading scripts handling computed
columns and on-the-fly sanitization of the input data. For more complex data loading scenarios, you will be required
to learn that DSL’s syntax. It’s meant to look familiar to DBA by being inspired by SQL where it makes sense, which
is not that much after all.

The pgloader commands follow the same global grammar rules. Each of them might support only a subset of the
general options and provide specific options.

LOAD <source-type>
FROM <source-url>

[HAVING FIELDS <source-level-options>]
INTO <postgresql-url>

[TARGET TABLE ["<schema>"]."<table name>"]
[TARGET COLUMNS <columns-and-options>]

[WITH <load-options>]

[SET <postgresql-settings>]

[BEFORE LOAD [DO <sql statements> | EXECUTE <sql file>] ...]
[AFTER LOAD [DO <sql statements> | EXECUTE <sql file>] ...]

;

The main clauses are the LOAD, FROM, INTO and WITH clauses that each command implements. Some command
then implement the SET command, or some specific clauses such as the CAST clause.

30 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

Templating with Mustache

pgloader implements the https://mustache.github.io/ templating system so that you may have dynamic parts of your
commands. See the documentation for this template system online.

A specific feature of pgloader is the ability to fetch a variable from the OS environment of the pgloader process,
making it possible to run pgloader as in the following example:

$ DBPATH=sqlite/sqlite.db pgloader ./test/sqlite-env.load

or in several steps:

$ export DBPATH=sqlite/sqlite.db
$ pgloader ./test/sqlite-env.load

The variable can then be used in a typical mustache fashion:

load database
from '{{DBPATH}}'
into postgresql:///pgloader;

It’s also possible to prepare a INI file such as the following:

[pgloader]

DBPATH = sqlite/sqlite.db

And run the following command, feeding the INI values as a context for pgloader templating system:

$ pgloader --context ./test/sqlite.ini ./test/sqlite-ini.load

The mustache templates implementation with OS environment support replaces former GETENV implementation,
which didn’t work anyway.

Common Clauses

Some clauses are common to all commands:

FROM

The FROM clause specifies where to read the data from, and each command introduces its own variant of sources. For
instance, the CSV source supports inline, stdin, a filename, a quoted filename, and a FILENAME MATCHING clause
(see above); whereas the MySQL source only supports a MySQL database URI specification.

INTO

The PostgreSQL connection URI must contains the name of the target table where to load the data into. That table
must have already been created in PostgreSQL, and the name might be schema qualified.

Then INTO option also supports an optional comma separated list of target columns, which are either the name of
an input field or the white space separated list of the target column name, its PostgreSQL data type and a USING
expression.

1.3. Continuous Migration 31

https://mustache.github.io/

pgloader Documentation, Release 3.6.8

The USING expression can be any valid Common Lisp form and will be read with the current package set to
pgloader.transforms, so that you can use functions defined in that package, such as functions loaded dynamically
with the –load command line parameter.

Each USING expression is compiled at runtime to native code.

This feature allows pgloader to load any number of fields in a CSV file into a possibly different number of columns in
the database, using custom code for that projection.

WITH

Set of options to apply to the command, using a global syntax of either:

• key = value

• use option

• do not use option

See each specific command for details.

All data sources specific commands support the following options:

• on error stop, on error resume next

• batch rows = R

• batch size = . . . MB

• prefetch rows = . . .

See the section BATCH BEHAVIOUR OPTIONS for more details.

In addition, the following settings are available:

• workers = W

• concurrency = C

• max parallel create index = I

See section A NOTE ABOUT PARALLELISM for more details.

SET

This clause allows to specify session parameters to be set for all the sessions opened by pgloader. It expects a list of
parameter name, the equal sign, then the single-quoted value as a comma separated list.

The names and values of the parameters are not validated by pgloader, they are given as-is to PostgreSQL.

BEFORE LOAD DO

You can run SQL queries against the database before loading the data from the CSV file. Most common SQL queries
are CREATE TABLE IF NOT EXISTS so that the data can be loaded.

Each command must be dollar-quoted: it must begin and end with a double dollar sign, $$. Dollar-quoted queries are
then comma separated. No extra punctuation is expected after the last SQL query.

32 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

BEFORE LOAD EXECUTE

Same behaviour as in the BEFORE LOAD DO clause. Allows you to read the SQL queries from a SQL file. Implements
support for PostgreSQL dollar-quoting and the i and ir include facilities as in psql batch mode (where they are the
same thing).

AFTER LOAD DO

Same format as BEFORE LOAD DO, the dollar-quoted queries found in that section are executed once the load is
done. That’s the right time to create indexes and constraints, or re-enable triggers.

AFTER LOAD EXECUTE

Same behaviour as in the AFTER LOAD DO clause. Allows you to read the SQL queries from a SQL file. Implements
support for PostgreSQL dollar-quoting and the i and ir include facilities as in psql batch mode (where they are the
same thing).

AFTER CREATE SCHEMA DO

Same format as BEFORE LOAD DO, the dollar-quoted queries found in that section are executed once the schema
has been created by pgloader, and before the data is loaded. It’s the right time to ALTER TABLE or do some custom
implementation on-top of what pgloader does, like maybe partitioning.

AFTER CREATE SCHEMA EXECUTE

Same behaviour as in the AFTER CREATE SCHEMA DO clause. Allows you to read the SQL queries from a SQL
file. Implements support for PostgreSQL dollar-quoting and the i and ir include facilities as in psql batch mode (where
they are the same thing).

Connection String

The <postgresql-url> parameter is expected to be given as a Connection URI as documented in the PostgreSQL
documentation at http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING.

postgresql://[user[:password]@][netloc][:port][/dbname][?option=value&...]

Where:

• user

Can contain any character, including colon (:) which must then be doubled (::) and at-sign (@) which must then
be doubled (@@).

When omitted, the user name defaults to the value of the PGUSER environment variable, and if it is unset, the
value of the USER environment variable.

• password

Can contain any character, including the at sign (@) which must then be doubled (@@). To leave the
password empty, when the user name ends with at at sign, you then have to use the syntax user:@.

1.3. Continuous Migration 33

http://www.postgresql.org/docs/9.3/static/libpq-connect.html#LIBPQ-CONNSTRING

pgloader Documentation, Release 3.6.8

When omitted, the password defaults to the value of the PGPASSWORD environment variable if it is set, other-
wise the password is left unset.

When no password is found either in the connection URI nor in the environment, then pgloader looks for a
.pgpass file as documented at https://www.postgresql.org/docs/current/static/libpq-pgpass.html. The implemen-
tation is not that of libpq though. As with libpq you can set the environment variable PGPASSFILE to point to
a .pgpass file, and pgloader defaults to ~/.pgpass on unix like systems and %APPDATA%postgresqlpgpass.conf
on windows. Matching rules and syntax are the same as with libpq, refer to its documentation.

• netloc

Can be either a hostname in dotted notation, or an ipv4, or an Unix domain socket path. Empty is the default
network location, under a system providing unix domain socket that method is preferred, otherwise the netloc
default to localhost.

It’s possible to force the unix domain socket path by using the syntax
unix:/path/to/where/the/socket/file/is, so to force a non default socket path and a non default
port, you would have:

postgresql://unix:/tmp:54321/dbname

The netloc defaults to the value of the PGHOST environment variable, and if it is unset, to either the default
unix socket path when running on a Unix system, and localhost otherwise.

Socket path containing colons are supported by doubling the colons within the path, as in the following example:

postgresql://unix:/tmp/project::region::instance:5432/dbname

• dbname

Should be a proper identifier (letter followed by a mix of letters, digits and the punctuation signs
comma (,), dash (-) and underscore (_).

When omitted, the dbname defaults to the value of the environment variable PGDATABASE, and if that is unset,
to the user value as determined above.

• options

The optional parameters must be supplied with the form name=value, and you may use several parameters by
separating them away using an ampersand (&) character.

Only some options are supported here, tablename (which might be qualified with a schema name) sslmode, host,
port, dbname, user and password.

The sslmode parameter values can be one of disable, allow, prefer or require.

For backward compatibility reasons, it’s possible to specify the tablename option directly, without spelling out
the tablename= parts.

The options override the main URI components when both are given, and using the percent-encoded option pa-
rameters allow using passwords starting with a colon and bypassing other URI components parsing limitations.

Regular Expressions

Several clauses listed in the following accept regular expressions with the following input rules:

• A regular expression begins with a tilde sign (~),

• is then followed with an opening sign,

• then any character is allowed and considered part of the regular expression, except for the closing sign,

• then a closing sign is expected.

34 Chapter 1. Features Overview

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

pgloader Documentation, Release 3.6.8

The opening and closing sign are allowed by pair, here’s the complete list of allowed delimiters:

~//
~[]
~{}
~()
~<>
~""
~''
~||
~##

Pick the set of delimiters that don’t collide with the regular expression you’re trying to input. If your expression is
such that none of the solutions allow you to enter it, the places where such expressions are allowed should allow for a
list of expressions.

Comments

Any command may contain comments, following those input rules:

• the – delimiter begins a comment that ends with the end of the current line,

• the delimiters /* and */ respectively start and end a comment, which can be found in the middle of a command
or span several lines.

Any place where you could enter a whitespace will accept a comment too.

Batch behaviour options

All pgloader commands have support for a WITH clause that allows for specifying options. Some options are generic
and accepted by all commands, such as the batch behaviour options, and some options are specific to a data source
kind, such as the CSV skip header option.

The global batch behaviour options are:

• batch rows

Takes a numeric value as argument, used as the maximum number of rows allowed in a batch. The default is 25
000 and can be changed to try having better performance characteristics or to control pgloader memory usage;

• batch size

Takes a memory unit as argument, such as 20 MB, its default value. Accepted multipliers are kB, MB, GB, TB
and PB. The case is important so as not to be confused about bits versus bytes, we’re only talking bytes here.

• prefetch rows

Takes a numeric value as argument, defaults to 100000. That’s the number of rows that pgloader is allowed to
read in memory in each reader thread. See the workers setting for how many reader threads are allowed to run
at the same time.

Other options are specific to each input source, please refer to specific parts of the documentation for their listing and
covering.

A batch is then closed as soon as either the batch rows or the batch size threshold is crossed, whichever comes first. In
cases when a batch has to be closed because of the batch size setting, a debug level log message is printed with how
many rows did fit in the oversized batch.

1.3. Continuous Migration 35

pgloader Documentation, Release 3.6.8

1.3.6 Loading CSV data

This command instructs pgloader to load data from a CSV file. Because of the complexity of guessing the parameters
of a CSV file, it’s simpler to instruct pgloader with how to parse the data in there, using the full pgloader command
syntax and CSV specifications as in the following example.

Using advanced options and a load command file

The command then would be:

$ pgloader csv.load

And the contents of the csv.load file could be inspired from the following:

LOAD CSV
FROM 'GeoLiteCity-Blocks.csv' WITH ENCODING iso-646-us

HAVING FIELDS
(

startIpNum, endIpNum, locId
)

INTO postgresql://user@localhost:54393/dbname
TARGET TABLE geolite.blocks
TARGET COLUMNS
(

iprange ip4r using (ip-range startIpNum endIpNum),
locId

)
WITH truncate,

skip header = 2,
fields optionally enclosed by '"',
fields escaped by backslash-quote,
fields terminated by '\t'

SET work_mem to '32 MB', maintenance_work_mem to '64 MB';

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

CSV Source Specification: FROM

Filename where to load the data from. Accepts an ENCODING option. Use the –list-encodings option to know which
encoding names are supported.

The filename may be enclosed by single quotes, and could be one of the following special values:

• inline

The data is found after the end of the parsed commands. Any number of empty lines between the end of the
commands and the beginning of the data is accepted.

• stdin

Reads the data from the standard input stream.

36 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

• FILENAME MATCHING

The whole matching clause must follow the following rule:

[ALL FILENAMES | [FIRST] FILENAME]
MATCHING regexp
[IN DIRECTORY '...']

The matching clause applies given regular expression (see above for exact syntax, several options can be used
here) to filenames. It’s then possible to load data from only the first match of all of them.

The optional IN DIRECTORY clause allows specifying which directory to walk for finding the data files, and
can be either relative to where the command file is read from, or absolute. The given directory must exists.

Fields Specifications

The FROM option also supports an optional comma separated list of field names describing what is expected in the
CSV data file, optionally introduced by the clause HAVING FIELDS.

Each field name can be either only one name or a name following with specific reader options for that field, enclosed
in square brackets and comma-separated. Supported per-field reader options are:

• terminated by

See the description of field terminated by below.

The processing of this option is not currently implemented.

• date format

When the field is expected of the date type, then this option allows to specify the date format used in the file.

Date format string are template strings modeled against the PostgreSQL to_char template strings support, lim-
ited to the following patterns:

– YYYY, YYY, YY for the year part

– MM for the numeric month part

– DD for the numeric day part

– HH, HH12, HH24 for the hour part

– am, AM, a.m., A.M.

– pm, PM, p.m., P.M.

– MI for the minutes part

– SS for the seconds part

– MS for the milliseconds part (4 digits)

– US for the microseconds part (6 digits)

– unparsed punctuation signs: - . * # @ T / and space

Here’s an example of a date format specification:

column-name [date format 'YYYY-MM-DD HH24-MI-SS.US']

• null if

1.3. Continuous Migration 37

pgloader Documentation, Release 3.6.8

This option takes an argument which is either the keyword blanks or a double-quoted string.

When blanks is used and the field value that is read contains only space characters, then it’s automat-
ically converted to an SQL NULL value.

When a double-quoted string is used and that string is read as the field value, then the field value is
automatically converted to an SQL NULL value.

• trim both whitespace, trim left whitespace, trim right whitespace

This option allows to trim whitespaces in the read data, either from both sides of the data, or only the whitespace
characters found on the left of the streaing, or only those on the right of the string.

CSV Loading Options: WITH

When loading from a CSV file, the following options are supported:

• truncate

When this option is listed, pgloader issues a TRUNCATE command against the PostgreSQL target
table before reading the data file.

• drop indexes

When this option is listed, pgloader issues DROP INDEX commands against all the indexes defined on the target
table before copying the data, then CREATE INDEX commands once the COPY is done.

In order to get the best performance possible, all the indexes are created in parallel and when done the primary
keys are built again from the unique indexes just created. This two step process allows creating the primary key
index in parallel with the other indexes, as only the ALTER TABLE command needs an access exclusive lock on
the target table.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• skip header

Takes a numeric value as argument. Instruct pgloader to skip that many lines at the beginning of the input file.

• csv header

Use the first line read after skip header as the list of csv field names to be found in the CSV file, using the same
CSV parameters as for the CSV data.

• trim unquoted blanks

When reading unquoted values in the CSV file, remove the blanks found in between the separator and the value.
That behaviour is the default.

• keep unquoted blanks

When reading unquoted values in the CSV file, keep blanks found in between the separator and the value.

• fields optionally enclosed by

Takes a single character as argument, which must be found inside single quotes, and might be given as the
printable character itself, the special value t to denote a tabulation character, the special value ‘ to denote a
single-quote, or 0x then an hexadecimal value read as the ASCII code for the character.

38 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

The following options specify the same enclosing character, a single quote:

fields optionally enclosed by '\''
fields optionally enclosed by '0x27'

This character is used as the quoting character in the CSV file, and defaults to double-quote.

• fields not enclosed

By default, pgloader will use the double-quote character as the enclosing character. If you have a CSV file where
fields are not enclosed and are using double-quote as an expected ordinary character, then use the option fields
not enclosed for the CSV parser to accept those values.

• fields escaped by

Takes either the special value backslash-quote or double-quote, or any value supported by the fields terminated
by option (see below). This value is used to recognize escaped field separators when they are to be found within
the data fields themselves. Defaults to double-quote.

• csv escape mode

Takes either the special value quote (the default) or following and allows the CSV parser to parse either only
escaped field separator or any character (including CSV data) when using the following value.

• fields terminated by

Takes a single character as argument, which must be found inside single quotes, and might be given as the
printable character itself, the special value t to denote a tabulation character, or 0x then an hexadecimal value
read as the ASCII code for the character.

This character is used as the field separator when reading the CSV data.

• lines terminated by

Takes a single character as argument, which must be found inside single quotes, and might be given as the
printable character itself, the special value t to denote a tabulation character, or 0x then an hexadecimal value
read as the ASCII code for the character.

This character is used to recognize end-of-line condition when reading the CSV data.

1.3.7 Loading Fixed Cols File Formats

This command instructs pgloader to load data from a text file containing columns arranged in a fixed size manner.

Using advanced options and a load command file

The command then would be:

$ pgloader fixed.load

And the contents of the fixed.load file could be inspired from the following:

LOAD FIXED
FROM inline

(
a from 0 for 10,
b from 10 for 8,
c from 18 for 8,
d from 26 for 17 [null if blanks, trim right whitespace]

(continues on next page)

1.3. Continuous Migration 39

pgloader Documentation, Release 3.6.8

(continued from previous page)

)
INTO postgresql:///pgloader

TARGET TABLE fixed
(

a, b,
c time using (time-with-no-separator c),
d

)

WITH truncate

SET work_mem to '14MB',
standard_conforming_strings to 'on'

BEFORE LOAD DO
$$ drop table if exists fixed; $$,
$$ create table fixed (

a integer,
b date,
c time,
d text
);

$$;

01234567892008052011431250firstline
01234562008052115182300left blank-padded

12345678902008052208231560another line
2345609872014092914371500
2345678902014092914371520

Note that the example comes from the test suite of pgloader, where we use the advanced feature FROM inline that
allows embedding the source data within the command file. In most cases a more classic FROM clause loading the
data from a separate file would be used.

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

Fixed File Format Source Specification: FROM

Filename where to load the data from. Accepts an ENCODING option. Use the –list-encodings option to know which
encoding names are supported.

The filename may be enclosed by single quotes, and could be one of the following special values:

• inline

The data is found after the end of the parsed commands. Any number of empty lines between the end
of the commands and the beginning of the data is accepted.

• stdin

Reads the data from the standard input stream.

• FILENAMES MATCHING

The whole matching clause must follow the following rule:

40 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

[ALL FILENAMES | [FIRST] FILENAME]
MATCHING regexp
[IN DIRECTORY '...']

The matching clause applies given regular expression (see above for exact syntax, several options can be used
here) to filenames. It’s then possible to load data from only the first match of all of them.

The optional IN DIRECTORY clause allows specifying which directory to walk for finding the data files, and
can be either relative to where the command file is read from, or absolute. The given directory must exists.

Fields Specifications

The FROM option also supports an optional comma separated list of field names describing what is expected in the
FIXED data file.

Each field name is composed of the field name followed with specific reader options for that field. Supported per-field
reader options are the following, where only start and length are required.

• start

Position in the line where to start reading that field’s value. Can be entered with decimal digits or 0x then
hexadecimal digits.

• length

How many bytes to read from the start position to read that field’s value. Same format as start.

Those optional parameters must be enclosed in square brackets and comma-separated:

• terminated by

See the description of field terminated by below.

The processing of this option is not currently implemented.

• date format

When the field is expected of the date type, then this option allows to specify the date format used in the file.

Date format string are template strings modeled against the PostgreSQL to_char template strings support, lim-
ited to the following patterns:

– YYYY, YYY, YY for the year part

– MM for the numeric month part

– DD for the numeric day part

– HH, HH12, HH24 for the hour part

– am, AM, a.m., A.M.

– pm, PM, p.m., P.M.

– MI for the minutes part

– SS for the seconds part

– MS for the milliseconds part (4 digits)

– US for the microseconds part (6 digits)

– unparsed punctuation signs: - . * # @ T / and space

Here’s an example of a date format specification:

1.3. Continuous Migration 41

pgloader Documentation, Release 3.6.8

column-name [date format 'YYYY-MM-DD HH24-MI-SS.US']

• null if

This option takes an argument which is either the keyword blanks or a double-quoted string.

When blanks is used and the field value that is read contains only space characters, then it’s automatically
converted to an SQL NULL value.

When a double-quoted string is used and that string is read as the field value, then the field value is automatically
converted to an SQL NULL value.

• trim both whitespace, trim left whitespace, trim right whitespace

This option allows to trim whitespaces in the read data, either from both sides of the data, or only the whitespace
characters found on the left of the streaing, or only those on the right of the string.

Fixed File Format Loading Options: WITH

When loading from a FIXED file, the following options are supported:

• truncate

When this option is listed, pgloader issues a TRUNCATE command against the PostgreSQL target table before
reading the data file.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• skip header

Takes a numeric value as argument. Instruct pgloader to skip that many lines at the beginning of the input file.

1.3.8 Loading COPY Formatted Files

This commands instructs pgloader to load from a file containing COPY TEXT data as described in the PostgreSQL
documentation.

Using advanced options and a load command file

The command then would be:

$ pgloader copy.load

And the contents of the copy.load file could be inspired from the following:

LOAD COPY
FROM copy://./data/track.copy

(
trackid, track, album, media, genre, composer,
milliseconds, bytes, unitprice

(continues on next page)

42 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

(continued from previous page)

)
INTO postgresql:///pgloader

TARGET TABLE track_full

WITH truncate

SET work_mem to '14MB',
standard_conforming_strings to 'on'

BEFORE LOAD DO
$$ drop table if exists track_full; $$,
$$ create table track_full (

trackid bigserial,
track text,
album text,
media text,
genre text,
composer text,
milliseconds bigint,
bytes bigint,
unitprice numeric

);
$$;

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

COPY Formatted Files Source Specification: FROM

Filename where to load the data from. This support local files, HTTP URLs and zip files containing a single dbf file
of the same name. Fetch such a zip file from an HTTP address is of course supported.

• inline

The data is found after the end of the parsed commands. Any number of empty lines between the end of the
commands and the beginning of the data is accepted.

• stdin

Reads the data from the standard input stream.

• FILENAMES MATCHING

The whole matching clause must follow the following rule:

[ALL FILENAMES | [FIRST] FILENAME]
MATCHING regexp
[IN DIRECTORY '...']

The matching clause applies given regular expression (see above for exact syntax, several options can be used
here) to filenames. It’s then possible to load data from only the first match of all of them.

The optional IN DIRECTORY clause allows specifying which directory to walk for finding the data files, and
can be either relative to where the command file is read from, or absolute. The given directory must exists.

1.3. Continuous Migration 43

pgloader Documentation, Release 3.6.8

COPY Formatted File Options: WITH

When loading from a COPY file, the following options are supported:

• delimiter

Takes a single character as argument, which must be found inside single quotes, and might be given as the
printable character itself, the special value t to denote a tabulation character, or 0x then an hexadecimal value
read as the ASCII code for the character.

This character is used as the delimiter when reading the data, in a similar way to the PostgreSQL COPY option.

• null

Takes a quoted string as an argument (quotes can be either double quotes or single quotes) and uses that string
as the NULL representation in the data.

This is similar to the null COPY option in PostgreSQL.

• truncate

When this option is listed, pgloader issues a TRUNCATE command against the PostgreSQL target table before
reading the data file.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• skip header

Takes a numeric value as argument. Instruct pgloader to skip that many lines at the beginning of the input file.

1.3.9 Loading DBF data

This command instructs pgloader to load data from a DBF file. A default set of casting rules are provided and might
be overloaded and appended to by the command.

Using advanced options and a load command file

Here’s an example with a remote HTTP source and some user defined casting rules. The command then would be:

$ pgloader dbf.load

And the contents of the dbf.load file could be inspired from the following:

LOAD DBF
FROM http://www.insee.fr/fr/methodes/nomenclatures/cog/telechargement/2013/dbf/

→˓reg2013.dbf
INTO postgresql://user@localhost/dbname
WITH truncate, create table
CAST column reg2013.region to integer,

column reg2013.tncc to smallint;

44 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

DBF Source Specification: FROM

Filename where to load the data from. This support local files, HTTP URLs and zip files containing a single dbf file
of the same name. Fetch such a zip file from an HTTP address is of course supported.

DBF Loading Options: WITH

When loading from a DBF file, the following options are supported:

• truncate

When this option is listed, pgloader issues a TRUNCATE command against the PostgreSQL target table before
reading the data file.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• create table

When this option is listed, pgloader creates the table using the meta data found in the DBF file, which must
contain a list of fields with their data type. A standard data type conversion from DBF to PostgreSQL is done.

• table name

This options expects as its value the possibly qualified name of the table to create.

Default DB3 Casting Rules

When migrating from DB3 the following Casting Rules are provided:

type C to text using db3-trim-string
type M to text using db3-trim-string
type N to numeric using db3-numeric-to-pgsql-integer
type I to numeric using db3-numeric-to-pgsql-numeric
type L to boolean using logical-to-boolean
type D to date using db3-date-to-pgsql-date

1.3.10 Loading IXF Data

This command instructs pgloader to load data from an IBM IXF file.

1.3. Continuous Migration 45

pgloader Documentation, Release 3.6.8

Using advanced options and a load command file

The command then would be:

$ pgloader ixf.load

And the contents of the ixf.load file could be inspired from the following:

LOAD IXF
FROM data/nsitra.test1.ixf
INTO postgresql:///pgloader

TARGET TABLE nsitra.test1
WITH truncate, create table, timezone UTC

BEFORE LOAD DO
$$ create schema if not exists nsitra; $$,
$$ drop table if exists nsitra.test1; $$;

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

IXF Source Specification: FROM

Filename where to load the data from. This support local files, HTTP URLs and zip files containing a single ixf file of
the same name. Fetch such a zip file from an HTTP address is of course supported.

IXF Loading Options: WITH

When loading from a IXF file, the following options are supported:

• truncate

When this option is listed, pgloader issues a TRUNCATE command against the PostgreSQL target table before
reading the data file.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• create table

When this option is listed, pgloader creates the table using the meta data found in the DBF file, which must
contain a list of fields with their data type. A standard data type conversion from DBF to PostgreSQL is done.

• table name

This options expects as its value the possibly qualified name of the table to create.

• timezone

46 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

This options allows to specify which timezone is used when parsing timestamps from an IXF file, and defaults
to UTC. Expected values are either UTC, GMT or a single quoted location name such as ‘Universal’ or ‘Eu-
rope/Paris’.

1.3.11 Loading From an Archive

This command instructs pgloader to load data from one or more files contained in an archive. Currently the only
supported archive format is ZIP, and the archive might be downloaded from an HTTP URL.

Using advanced options and a load command file

The command then would be:

$ pgloader archive.load

And the contents of the archive.load file could be inspired from the following:

LOAD ARCHIVE
FROM /Users/dim/Downloads/GeoLiteCity-latest.zip
INTO postgresql:///ip4r

BEFORE LOAD
DO $$ create extension if not exists ip4r; $$,

$$ create schema if not exists geolite; $$,

EXECUTE 'geolite.sql'

LOAD CSV
FROM FILENAME MATCHING ~/GeoLiteCity-Location.csv/

WITH ENCODING iso-8859-1
(

locId,
country,
region null if blanks,
city null if blanks,
postalCode null if blanks,
latitude,
longitude,
metroCode null if blanks,
areaCode null if blanks

)
INTO postgresql:///ip4r?geolite.location

(
locid,country,region,city,postalCode,
location point using (format nil "(~a,~a)" longitude latitude),
metroCode,areaCode

)
WITH skip header = 2,

fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ','

AND LOAD CSV
FROM FILENAME MATCHING ~/GeoLiteCity-Blocks.csv/

WITH ENCODING iso-8859-1

(continues on next page)

1.3. Continuous Migration 47

pgloader Documentation, Release 3.6.8

(continued from previous page)

(
startIpNum, endIpNum, locId

)
INTO postgresql:///ip4r?geolite.blocks

(
iprange ip4r using (ip-range startIpNum endIpNum),
locId

)
WITH skip header = 2,

fields optionally enclosed by '"',
fields escaped by double-quote,
fields terminated by ','

FINALLY DO
$$ create index blocks_ip4r_idx on geolite.blocks using gist(iprange); $$;

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

Archive Source Specification: FROM

Filename or HTTP URI where to load the data from. When given an HTTP URL the linked file will get downloaded
locally before processing.

If the file is a zip file, the command line utility unzip is used to expand the archive into files in $TMPDIR, or /tmp if
$TMPDIR is unset or set to a non-existing directory.

Then the following commands are used from the top level directory where the archive has been expanded.

Archive Sub Commands

• command [AND command . . .]

A series of commands against the contents of the archive, at the moment only CSV,‘’FIXED‘ and DBF com-
mands are supported.

Note that commands are supporting the clause FROM FILENAME MATCHING which allows the pgloader
command not to depend on the exact names of the archive directories.

The same clause can also be applied to several files with using the spelling FROM ALL FILENAMES MATCH-
ING and a regular expression.

The whole matching clause must follow the following rule:

FROM [ALL FILENAMES | [FIRST] FILENAME] MATCHING

Archive Final SQL Commands

• FINALLY DO

SQL Queries to run once the data is loaded, such as CREATE INDEX.

48 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

1.3.12 Migrating a MySQL Database to PostgreSQL

This command instructs pgloader to load data from a database connection. pgloader supports dynamically converting
the schema of the source database and the indexes building.

A default set of casting rules are provided and might be overloaded and appended to by the command.

Using default settings

Here is the simplest command line example, which might be all you need:

$ pgloader mysql://myuser@myhost/dbname pgsql://pguser@pghost/dbname

Using advanced options and a load command file

It might be that you want more flexibility than that and want to set advanced options. Then the next example is using
as many options as possible, some of them even being defaults. Chances are you don’t need that complex a setup,
don’t copy and paste it, use it only as a reference!

The command then would be:

$ pgloader my.load

And the contents of the command file my.load could be inspired from the following:

LOAD DATABASE
FROM mysql://root@localhost/sakila
INTO postgresql://localhost:54393/sakila

WITH include drop, create tables, create indexes, reset sequences,
workers = 8, concurrency = 1,
multiple readers per thread, rows per range = 50000

SET PostgreSQL PARAMETERS
maintenance_work_mem to '128MB',
work_mem to '12MB',
search_path to 'sakila, public, "$user"'

SET MySQL PARAMETERS
net_read_timeout = '120',
net_write_timeout = '120'

CAST type bigint when (= precision 20) to bigserial drop typemod,
type date drop not null drop default using zero-dates-to-null,
-- type tinyint to boolean using tinyint-to-boolean,
type year to integer

MATERIALIZE VIEWS film_list, staff_list

-- INCLUDING ONLY TABLE NAMES MATCHING ~/film/, 'actor'
-- EXCLUDING TABLE NAMES MATCHING ~<ory>
-- DECODING TABLE NAMES MATCHING ~/messed/, ~/encoding/ AS utf8
-- ALTER TABLE NAMES MATCHING 'film' RENAME TO 'films'
-- ALTER TABLE NAMES MATCHING ~/_list$/ SET SCHEMA 'mv'

ALTER TABLE NAMES MATCHING ~/_list$/, 'sales_by_store', ~/sales_by/
(continues on next page)

1.3. Continuous Migration 49

pgloader Documentation, Release 3.6.8

(continued from previous page)

SET SCHEMA 'mv'

ALTER TABLE NAMES MATCHING 'film' RENAME TO 'films'
ALTER TABLE NAMES MATCHING ~/./ SET (fillfactor='40')

ALTER SCHEMA 'sakila' RENAME TO 'pagila'

BEFORE LOAD DO
$$ create schema if not exists pagila; $$,
$$ create schema if not exists mv; $$,
$$ alter database sakila set search_path to pagila, mv, public; $$;

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

MySQL Database Source Specification: FROM

Must be a connection URL pointing to a MySQL database.

If the connection URI contains a table name, then only this table is migrated from MySQL to PostgreSQL.

See the SOURCE CONNECTION STRING section above for details on how to write the connection string. The
MySQL connection string accepts the same parameter sslmode as the PostgreSQL connection string, but the verify
mode is not implemented (yet).

mysql://[user[:password]@][netloc][:port][/dbname][?option=value&...]

MySQL connection strings support specific options:

• useSSL

The same notation rules as found in the Connection String parts of the documentation apply, and we have a
specific MySQL option: useSSL. The value for useSSL can be either false or true.

If both sslmode and useSSL are used in the same connection string, pgloader behavior is undefined.

The MySQL connection string also accepts the useSSL parameter with values being either false or true.

Environment variables described in <http://dev.mysql.com/doc/refman/5.0/en/environment-variables.html> can be
used as default values too. If the user is not provided, then it defaults to USER environment variable value. The
password can be provided with the environment variable MYSQL_PWD. The host can be provided with the environ-
ment variable MYSQL_HOST and otherwise defaults to localhost. The port can be provided with the environment
variable MYSQL_TCP_PORT and otherwise defaults to 3306.

MySQL Database Migration Options: WITH

When loading from a MySQL database, the following options are supported, and the default WITH clause is: no
truncate, create tables, include drop, create indexes, reset sequences, foreign keys, downcase identifiers, uniquify
index names.

• include drop

When this option is listed, pgloader drops all the tables in the target PostgreSQL database whose names appear
in the MySQL database. This option allows for using the same command several times in a row until you figure
out all the options, starting automatically from a clean environment. Please note that CASCADE is used to

50 Chapter 1. Features Overview

http://dev.mysql.com/doc/refman/5.0/en/environment-variables.html

pgloader Documentation, Release 3.6.8

ensure that tables are dropped even if there are foreign keys pointing to them. This is precisely what include
drop is intended to do: drop all target tables and recreate them.

Great care needs to be taken when using include drop, as it will cascade to all objects referencing the target
tables, possibly including other tables that are not being loaded from the source DB.

• include no drop

When this option is listed, pgloader will not include any DROP statement when loading the data.

• truncate

When this option is listed, pgloader issue the TRUNCATE command against each PostgreSQL table just before
loading data into it.

• no truncate

When this option is listed, pgloader issues no TRUNCATE command.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• create tables

When this option is listed, pgloader creates the table using the meta data found in the MySQL file, which must
contain a list of fields with their data type. A standard data type conversion from DBF to PostgreSQL is done.

• create no tables

When this option is listed, pgloader skips the creation of table before loading data, target tables must then
already exist.

Also, when using create no tables pgloader fetches the metadata from the current target database and checks
type casting, then will remove constraints and indexes prior to loading the data and install them back again once
the loading is done.

• create indexes

When this option is listed, pgloader gets the definitions of all the indexes found in the MySQL database and
create the same set of index definitions against the PostgreSQL database.

• create no indexes

When this option is listed, pgloader skips the creating indexes.

• drop indexes

When this option is listed, pgloader drops the indexes in the target database before loading the data, and creates
them again at the end of the data copy.

• uniquify index names, preserve index names

MySQL index names are unique per-table whereas in PostgreSQL index names have to be unique per-schema.
The default for pgloader is to change the index name by prefixing it with idx_OID where OID is the internal
numeric identifier of the table the index is built against.

In somes cases like when the DDL are entirely left to a framework it might be sensible for pgloader to refrain
from handling index unique names, that is achieved by using the preserve index names option.

The default is to uniquify index names.

1.3. Continuous Migration 51

pgloader Documentation, Release 3.6.8

Even when using the option preserve index names, MySQL primary key indexes named “PRIMARY” will get
their names uniquified. Failing to do so would prevent the primary keys to be created again in PostgreSQL
where the index names must be unique per schema.

• drop schema

When this option is listed, pgloader drops the target schema in the target PostgreSQL database before creating
it again and all the objects it contains. The default behavior doesn’t drop the target schemas.

• foreign keys

When this option is listed, pgloader gets the definitions of all the foreign keys found in the MySQL database
and create the same set of foreign key definitions against the PostgreSQL database.

• no foreign keys

When this option is listed, pgloader skips creating foreign keys.

• reset sequences

When this option is listed, at the end of the data loading and after the indexes have all been created, pgloader
resets all the PostgreSQL sequences created to the current maximum value of the column they are attached to.

The options schema only and data only have no effects on this option.

• reset no sequences

When this option is listed, pgloader skips resetting sequences after the load.

The options schema only and data only have no effects on this option.

• downcase identifiers

When this option is listed, pgloader converts all MySQL identifiers (table names, index names, column names)
to downcase, except for PostgreSQL reserved keywords.

The PostgreSQL reserved keywords are determined dynamically by using the system function
pg_get_keywords().

• quote identifiers

When this option is listed, pgloader quotes all MySQL identifiers so that their case is respected. Note that you
will then have to do the same thing in your application code queries.

• schema only

When this option is listed pgloader refrains from migrating the data over. Note that the schema in this context
includes the indexes when the option create indexes has been listed.

• data only

When this option is listed pgloader only issues the COPY statements, without doing any other processing.

• single reader per thread, multiple readers per thread

The default is single reader per thread and it means that each MySQL table is read by a single thread as a whole,
with a single SELECT statement using no WHERE clause.

When using multiple readers per thread pgloader may be able to divide the reading work into several threads,
as many as the concurrency setting, which needs to be greater than 1 for this option to kick be activated.

For each source table, pgloader searches for a primary key over a single numeric column, or a multiple-column
primary key index for which the first column is of a numeric data type (one of integer or bigint). When such an
index exists, pgloader runs a query to find the min and max values on this column, and then split that range into
many ranges containing a maximum of rows per range.

52 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

When the range list we then obtain contains at least as many ranges than our concurrency setting, then we
distribute those ranges to each reader thread.

So when all the conditions are met, pgloader then starts as many reader thread as the concurrency setting, and
each reader thread issues several queries with a WHERE id >= x AND id < y, where y - x = rows per range or
less (for the last range, depending on the max value just obtained.

• rows per range

How many rows are fetched per SELECT query when using multiple readers per thread, see above for details.

• SET MySQL PARAMETERS

The SET MySQL PARAMETERS allows setting MySQL parameters using the MySQL SET command each time
pgloader connects to it.

MySQL Database Casting Rules

The command CAST introduces user-defined casting rules.

The cast clause allows to specify custom casting rules, either to overload the default casting rules or to amend them
with special cases.

A casting rule is expected to follow one of the forms:

type <mysql-type-name> [<guard> ...] to <pgsql-type-name> [<option> ...]
column <table-name>.<column-name> [<guards>] to ...

It’s possible for a casting rule to either match against a MySQL data type or against a given column name in a given
table name. That flexibility allows to cope with cases where the type tinyint might have been used as a boolean in
some cases but as a smallint in others.

The casting rules are applied in order, the first match prevents following rules to be applied, and user defined rules are
evaluated first.

The supported guards are:

• when unsigned

The casting rule is only applied against MySQL columns of the source type that have the keyword unsigned in
their data type definition.

Example of a casting rule using a unsigned guard:

type smallint when unsigned to integer drop typemod

• when default ‘value’

The casting rule is only applied against MySQL columns of the source type that have given value, which must
be a single-quoted or a double-quoted string.

• when typemod expression

The casting rule is only applied against MySQL columns of the source type that have a typemod value matching
the given typemod expression. The typemod is separated into its precision and scale components.

Example of a cast rule using a typemod guard:

type char when (= precision 1) to char keep typemod

This expression casts MySQL char(1) column to a PostgreSQL column of type char(1) while allowing for the
general case char(N) will be converted by the default cast rule into a PostgreSQL type varchar(N).

1.3. Continuous Migration 53

pgloader Documentation, Release 3.6.8

• with extra auto_increment

The casting rule is only applied against MySQL columns having the extra column auto_increment option set,
so that it’s possible to target e.g. serial rather than integer.

The default matching behavior, when this option isn’t set, is to match both columns with the extra definition and
without.

This means that if you want to implement a casting rule that target either serial or integer from a smallint
definition depending on the auto_increment extra bit of information from MySQL, then you need to spell out
two casting rules as following:

type smallint with extra auto_increment
to serial drop typemod keep default keep not null,

type smallint
to integer drop typemod keep default keep not null

The supported casting options are:

• drop default, keep default

When the option drop default is listed, pgloader drops any existing default expression in the MySQL database
for columns of the source type from the CREATE TABLE statement it generates.

The spelling keep default explicitly prevents that behaviour and can be used to overload the default casting rules.

• drop not null, keep not null, set not null

When the option drop not null is listed, pgloader drops any existing NOT NULL constraint associated with the
given source MySQL datatype when it creates the tables in the PostgreSQL database.

The spelling keep not null explicitly prevents that behaviour and can be used to overload the default casting
rules.

When the option set not null is listed, pgloader sets a NOT NULL constraint on the target column regardless
whether it has been set in the source MySQL column.

• drop typemod, keep typemod

When the option drop typemod is listed, pgloader drops any existing typemod definition (e.g. precision and
scale) from the datatype definition found in the MySQL columns of the source type when it created the tables
in the PostgreSQL database.

The spelling keep typemod explicitly prevents that behaviour and can be used to overload the default casting
rules.

• using

This option takes as its single argument the name of a function to be found in the pgloader.transforms Common
Lisp package. See above for details.

It’s possible to augment a default cast rule (such as one that applies against ENUM data type for example) with
a transformation function by omitting entirely the type parts of the casting rule, as in the following example:

column enumerate.foo using empty-string-to-null

MySQL Views Support

MySQL views support allows pgloader to migrate view as if they were base tables. This feature then allows for
on-the-fly transformation from MySQL to PostgreSQL, as the view definition is used rather than the base data.

54 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

MATERIALIZE VIEWS

This clause allows you to implement custom data processing at the data source by providing a view definition against
which pgloader will query the data. It’s not possible to just allow for plain SQL because we want to know a lot about
the exact data types of each column involved in the query output.

This clause expect a comma separated list of view definitions, each one being either the name of an existing view in
your database or the following expression:

name `AS` `$$` *sql query* `$$`

The name and the sql query will be used in a CREATE VIEW statement at the beginning of the data loading, and the
resulting view will then be dropped at the end of the data loading.

MATERIALIZE ALL VIEWS

Same behaviour as MATERIALIZE VIEWS using the dynamic list of views as returned by MySQL rather than asking
the user to specify the list.

MySQL Partial Migration

INCLUDING ONLY TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expression used to limit the tables to migrate to a sublist.

Example:

including only table names matching ~/film/, 'actor'

EXCLUDING TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expression used to exclude table names from the migration.
This filter only applies to the result of the INCLUDING filter.

excluding table names matching ~<ory>

MySQL Encoding Support

DECODING TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expressions used to force the encoding to use when pro-
cessing data from MySQL. If the data encoding known to you is different from MySQL’s idea about it, this is the
option to use.

decoding table names matching ~/messed/, ~/encoding/ AS utf8

You can use as many such rules as you need, all with possibly different encodings.

1.3. Continuous Migration 55

pgloader Documentation, Release 3.6.8

MySQL Schema Transformations

ALTER TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expressions that you want to target in the pgloader ALTER
TABLE command. Available actions are SET SCHEMA, RENAME TO, and SET:

ALTER TABLE NAMES MATCHING ~/_list$/, 'sales_by_store', ~/sales_by/
SET SCHEMA 'mv'

ALTER TABLE NAMES MATCHING 'film' RENAME TO 'films'

ALTER TABLE NAMES MATCHING ~/./ SET (fillfactor='40')

ALTER TABLE NAMES MATCHING ~/./ SET TABLESPACE 'pg_default'

You can use as many such rules as you need. The list of tables to be migrated is searched in pgloader memory against
the ALTER TABLE matching rules, and for each command pgloader stops at the first matching criteria (regexp or
string).

No ALTER TABLE command is sent to PostgreSQL, the modification happens at the level of the pgloader in-memory
representation of your source database schema. In case of a name change, the mapping is kept and reused in the foreign
key and index support.

The SET () action takes effect as a WITH clause for the CREATE TABLE command that pgloader will run when it has
to create a table.

The SET TABLESPACE action takes effect as a TABLESPACE clause for the CREATE TABLE command that pgloader
will run when it has to create a table.

MySQL Migration: limitations

The database command currently only supports MySQL source database and has the following limitations:

• Views are not migrated,

Supporting views might require implementing a full SQL parser for the MySQL dialect with a porting engine to
rewrite the SQL against PostgreSQL, including renaming functions and changing some constructs.

While it’s not theoretically impossible, don’t hold your breath.

• Triggers are not migrated

The difficulty of doing so is not yet assessed.

• Of the geometric datatypes, only the POINT database has been covered. The other ones should be easy enough
to implement now, it’s just not done yet.

Default MySQL Casting Rules

When migrating from MySQL the following Casting Rules are provided:

Numbers:

type int with extra auto_increment to serial when (< precision 10)
type int with extra auto_increment to bigserial when (<= 10 precision)
type int to int when (< precision 10)
type int to bigint when (<= 10 precision)

(continues on next page)

56 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

(continued from previous page)

type tinyint with extra auto_increment to serial
type smallint with extra auto_increment to serial
type mediumint with extra auto_increment to serial
type bigint with extra auto_increment to bigserial

type tinyint to boolean when (= 1 precision) using tinyint-to-boolean

type bit when (= 1 precision) to boolean drop typemod using bits-to-boolean
type bit to bit drop typemod using bits-to-hex-bitstring

type bigint when signed to bigint drop typemod
type bigint when (< 19 precision) to numeric drop typemod

type tinyint when unsigned to smallint drop typemod
type smallint when unsigned to integer drop typemod
type mediumint when unsigned to integer drop typemod
type integer when unsigned to bigint drop typemod

type tinyint to smallint drop typemod
type smallint to smallint drop typemod
type mediumint to integer drop typemod
type integer to integer drop typemod
type bigint to bigint drop typemod

type float to float drop typemod
type double to double precision drop typemod

type numeric to numeric keep typemod
type decimal to decimal keep typemod

Texts:

type char to char keep typemod using remove-null-characters
type varchar to varchar keep typemod using remove-null-characters
type tinytext to text using remove-null-characters
type text to text using remove-null-characters
type mediumtext to text using remove-null-characters
type longtext to text using remove-null-characters

Binary:

type binary to bytea using byte-vector-to-bytea
type varbinary to bytea using byte-vector-to-bytea
type tinyblob to bytea using byte-vector-to-bytea
type blob to bytea using byte-vector-to-bytea
type mediumblob to bytea using byte-vector-to-bytea
type longblob to bytea using byte-vector-to-bytea

Date:

type datetime when default "0000-00-00 00:00:00" and not null
to timestamptz drop not null drop default

using zero-dates-to-null

type datetime when default "0000-00-00 00:00:00"
to timestamptz drop default

using zero-dates-to-null
(continues on next page)

1.3. Continuous Migration 57

pgloader Documentation, Release 3.6.8

(continued from previous page)

type datetime with extra on update current timestamp when not null
to timestamptz drop not null drop default

using zero-dates-to-null

type datetime with extra on update current timestamp
to timestamptz drop default

using zero-dates-to-null

type timestamp when default "0000-00-00 00:00:00" and not null
to timestamptz drop not null drop default

using zero-dates-to-null

type timestamp when default "0000-00-00 00:00:00"
to timestamptz drop default

using zero-dates-to-null

type date when default "0000-00-00" to date drop default
using zero-dates-to-null

type date to date
type datetime to timestamptz
type timestamp to timestamptz
type year to integer drop typemod

Geometric:

type geometry to point using convert-mysql-point
type point to point using convert-mysql-point
type linestring to path using convert-mysql-linestring

Enum types are declared inline in MySQL and separately with a CREATE TYPE command in PostgreSQL, so each
column of Enum Type is converted to a type named after the table and column names defined with the same labels in
the same order.

When the source type definition is not matched in the default casting rules nor in the casting rules provided in the
command, then the type name with the typemod is used.

1.3.13 Migrating a SQLite database to PostgreSQL

This command instructs pgloader to load data from a SQLite file. Automatic discovery of the schema is supported,
including build of the indexes.

Using default settings

Here is the simplest command line example, which might be all you need:

$ pgloader sqlite:///path/to/file.db pgsql://pguser@pghost/dbname

Using advanced options and a load command file

The command then would be:

58 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

$ pgloader db.load

Here’s an example of the db.load contents then:

load database
from sqlite:///Users/dim/Downloads/lastfm_tags.db
into postgresql:///tags

with include drop, create tables, create indexes, reset sequences

set work_mem to '16MB', maintenance_work_mem to '512 MB';

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

SQLite Database Source Specification: FROM

Path or HTTP URL to a SQLite file, might be a .zip file.

SQLite Database Migration Options: WITH

When loading from a SQLite database, the following options are supported:

When loading from a SQLite database, the following options are supported, and the default WITH clause is: no
truncate, create tables, include drop, create indexes, reset sequences, downcase identifiers, encoding ‘utf-8’.

• include drop

When this option is listed, pgloader drops all the tables in the target PostgreSQL database whose names appear
in the SQLite database. This option allows for using the same command several times in a row until you figure
out all the options, starting automatically from a clean environment. Please note that CASCADE is used to
ensure that tables are dropped even if there are foreign keys pointing to them. This is precisely what include
drop is intended to do: drop all target tables and recreate them.

Great care needs to be taken when using include drop, as it will cascade to all objects referencing the target
tables, possibly including other tables that are not being loaded from the source DB.

• include no drop

When this option is listed, pgloader will not include any DROP statement when loading the data.

• truncate

When this option is listed, pgloader issue the TRUNCATE command against each PostgreSQL table just before
loading data into it.

• no truncate

When this option is listed, pgloader issues no TRUNCATE command.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

1.3. Continuous Migration 59

pgloader Documentation, Release 3.6.8

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• create tables

When this option is listed, pgloader creates the table using the meta data found in the SQLite file, which must
contain a list of fields with their data type. A standard data type conversion from SQLite to PostgreSQL is done.

• create no tables

When this option is listed, pgloader skips the creation of table before loading data, target tables must then
already exist.

Also, when using create no tables pgloader fetches the metadata from the current target database and checks
type casting, then will remove constraints and indexes prior to loading the data and install them back again once
the loading is done.

• create indexes

When this option is listed, pgloader gets the definitions of all the indexes found in the SQLite database and
create the same set of index definitions against the PostgreSQL database.

• create no indexes

When this option is listed, pgloader skips the creating indexes.

• drop indexes

When this option is listed, pgloader drops the indexes in the target database before loading the data, and creates
them again at the end of the data copy.

• reset sequences

When this option is listed, at the end of the data loading and after the indexes have all been created, pgloader
resets all the PostgreSQL sequences created to the current maximum value of the column they are attached to.

• reset no sequences

When this option is listed, pgloader skips resetting sequences after the load.

The options schema only and data only have no effects on this option.

• schema only

When this option is listed pgloader will refrain from migrating the data over. Note that the schema in this context
includes the indexes when the option create indexes has been listed.

• data only

When this option is listed pgloader only issues the COPY statements, without doing any other processing.

• encoding

This option allows to control which encoding to parse the SQLite text data with. Defaults to UTF-8.

SQLite Database Casting Rules

The command CAST introduces user-defined casting rules.

The cast clause allows to specify custom casting rules, either to overload the default casting rules or to amend them
with special cases.

60 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

SQlite Database Partial Migrations

INCLUDING ONLY TABLE NAMES LIKE

Introduce a comma separated list of table name patterns used to limit the tables to migrate to a sublist.

Example:

including only table names like 'Invoice%'

EXCLUDING TABLE NAMES LIKE

Introduce a comma separated list of table name patterns used to exclude table names from the migration. This filter
only applies to the result of the INCLUDING filter.

excluding table names like 'appointments'

Default SQLite Casting Rules

When migrating from SQLite the following Casting Rules are provided:

Numbers:

type tinyint to smallint using integer-to-string
type integer to bigint using integer-to-string

type float to float using float-to-string
type real to real using float-to-string
type double to double precision using float-to-string
type numeric to numeric using float-to-string
type decimal to numeric using float-to-string

Texts:

type character to text drop typemod
type varchar to text drop typemod
type nvarchar to text drop typemod
type char to text drop typemod
type nchar to text drop typemod
type nvarchar to text drop typemod
type clob to text drop typemod

Binary:

type blob to bytea

Date:

type datetime to timestamptz using sqlite-timestamp-to-timestamp
type timestamp to timestamptz using sqlite-timestamp-to-timestamp
type timestamptz to timestamptz using sqlite-timestamp-to-timestamp

1.3. Continuous Migration 61

pgloader Documentation, Release 3.6.8

1.3.14 Migrating a MS SQL Database to PostgreSQL

This command instructs pgloader to load data from a MS SQL database. Automatic discovery of the schema is
supported, including build of the indexes, primary and foreign keys constraints.

Using default settings

Here is the simplest command line example, which might be all you need:

$ pgloader mssql://user@mshost/dbname pgsql://pguser@pghost/dbname

Using advanced options and a load command file

The command then would be:

$ pgloader ms.load

And the contents of the command file ms.load could be inspired from the following:

load database
from mssql://user@host/dbname
into postgresql:///dbname

including only table names like 'GlobalAccount' in schema 'dbo'

set work_mem to '16MB', maintenance_work_mem to '512 MB'

before load do $$ drop schema if exists dbo cascade; $$;

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

MS SQL Database Source Specification: FROM

Connection string to an existing MS SQL database server that listens and welcome external TCP/IP connection. As
pgloader currently piggybacks on the FreeTDS driver, to change the port of the server please export the TDSPORT
environment variable.

MS SQL Database Migration Options: WITH

When loading from a MS SQL database, the same options as when loading a MYSQL database are supported. Please
refer to the MYSQL section. The following options are added:

• create schemas

When this option is listed, pgloader creates the same schemas as found on the MS SQL instance. This is the
default.

• create no schemas

When this option is listed, pgloader refrains from creating any schemas at all, you must then ensure that the
target schema do exist.

62 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

MS SQL Database Casting Rules

CAST

The cast clause allows to specify custom casting rules, either to overload the default casting rules or to amend them
with special cases.

Please refer to the MS SQL CAST clause for details.

MS SQL Views Support

MS SQL views support allows pgloader to migrate view as if they were base tables. This feature then allows for
on-the-fly transformation from MS SQL to PostgreSQL, as the view definition is used rather than the base data.

MATERIALIZE VIEWS

This clause allows you to implement custom data processing at the data source by providing a view definition against
which pgloader will query the data. It’s not possible to just allow for plain SQL because we want to know a lot about
the exact data types of each column involved in the query output.

This clause expect a comma separated list of view definitions, each one being either the name of an existing view in
your database or the following expression:

name `AS` `$$` *sql query* `$$`

The name and the sql query will be used in a CREATE VIEW statement at the beginning of the data loading, and the
resulting view will then be dropped at the end of the data loading.

MATERIALIZE ALL VIEWS

Same behaviour as MATERIALIZE VIEWS using the dynamic list of views as returned by MS SQL rather than asking
the user to specify the list.

MS SQL Partial Migration

INCLUDING ONLY TABLE NAMES LIKE

Introduce a comma separated list of table name patterns used to limit the tables to migrate to a sublist. More than one
such clause may be used, they will be accumulated together.

Example:

including only table names like 'GlobalAccount' in schema 'dbo'

EXCLUDING TABLE NAMES LIKE

Introduce a comma separated list of table name patterns used to exclude table names from the migration. This filter
only applies to the result of the INCLUDING filter.

excluding table names matching 'LocalAccount' in schema 'dbo'

1.3. Continuous Migration 63

pgloader Documentation, Release 3.6.8

MS SQL Schema Transformations

ALTER SCHEMA ‘. . . ’ RENAME TO ‘. . . ’

Allows to rename a schema on the flight, so that for instance the tables found in the schema ‘dbo’ in your source
database will get migrated into the schema ‘public’ in the target database with this command:

alter schema 'dbo' rename to 'public'

ALTER TABLE NAMES MATCHING . . . IN SCHEMA ‘. . . ’

Introduce a comma separated list of table names or regular expressions that you want to target in the pgloader ALTER
TABLE command. Available actions are SET SCHEMA, RENAME TO, and SET:

ALTER TABLE NAMES MATCHING ~/_list$/, 'sales_by_store', ~/sales_by/
IN SCHEMA 'dbo'

SET SCHEMA 'mv'

ALTER TABLE NAMES MATCHING 'film' IN SCHEMA 'dbo' RENAME TO 'films'

ALTER TABLE NAMES MATCHING ~/./ IN SCHEMA 'dbo' SET (fillfactor='40')

ALTER TABLE NAMES MATCHING ~/./ IN SCHEMA 'dbo' SET TABLESPACE 'tlbspc'

You can use as many such rules as you need. The list of tables to be migrated is searched in pgloader memory against
the ALTER TABLE matching rules, and for each command pgloader stops at the first matching criteria (regexp or
string).

No ALTER TABLE command is sent to PostgreSQL, the modification happens at the level of the pgloader in-memory
representation of your source database schema. In case of a name change, the mapping is kept and reused in the foreign
key and index support.

The SET () action takes effect as a WITH clause for the CREATE TABLE command that pgloader will run when it has
to create a table.

The SET TABLESPACE action takes effect as a TABLESPACE clause for the CREATE TABLE command that pgloader
will run when it has to create a table.

The matching is done in pgloader itself, with a Common Lisp regular expression lib, so doesn’t depend on the LIKE
implementation of MS SQL, nor on the lack of support for regular expressions in the engine.

MS SQL Driver setup and encoding

pgloader is using the FreeTDS driver, and internally expects the data to be sent in utf-8. To achieve that, you can
configure the FreeTDS driver with those defaults, in the file ~/.freetds.conf :

[global]
tds version = 7.4
client charset = UTF-8

Default MS SQL Casting Rules

When migrating from MS SQL the following Casting Rules are provided:

Numbers:

64 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

type tinyint to smallint

type float to float using float-to-string
type real to real using float-to-string
type double to double precision using float-to-string
type numeric to numeric using float-to-string
type decimal to numeric using float-to-string
type money to numeric using float-to-string
type smallmoney to numeric using float-to-string

Texts:

type char to text drop typemod
type nchar to text drop typemod
type varchar to text drop typemod
type nvarchar to text drop typemod
type xml to text drop typemod

Binary:

type binary to bytea using byte-vector-to-bytea
type varbinary to bytea using byte-vector-to-bytea

Date:

type datetime to timestamptz
type datetime2 to timestamptz

Others:

type bit to boolean
type hierarchyid to bytea
type geography to bytea
type uniqueidentifier to uuid using sql-server-uniqueidentifier-to-uuid

1.3.15 Migrating a PostgreSQL Database to PostgreSQL

This command instructs pgloader to load data from a database connection. Automatic discovery of the schema is
supported, including build of the indexes, primary and foreign keys constraints. A default set of casting rules are
provided and might be overloaded and appended to by the command.

Using default settings

Here is the simplest command line example, which might be all you need:

$ pgloader pgsql://user@source/dbname pgsql://user@target/dbname

Using advanced options and a load command file

Here’s a short example of migrating a database from a PostgreSQL server to another. The command would then be:

$ pgloader pg.load

1.3. Continuous Migration 65

pgloader Documentation, Release 3.6.8

And the contents of the command file pg.load could be inspired from the following:

load database
from pgsql://localhost/pgloader
into pgsql://localhost/copy

including only table names matching 'bits', ~/utilisateur/ in schema 'mysql'
including only table names matching ~/geolocations/ in schema 'public'
;

Common Clauses

Please refer to Common Clauses for documentation about common clauses.

PostgreSQL Database Source Specification: FROM

Must be a connection URL pointing to a PostgreSQL database.

See the SOURCE CONNECTION STRING section above for details on how to write the connection string.

pgsql://[user[:password]@][netloc][:port][/dbname][?option=value&...]

PostgreSQL Database Migration Options: WITH

When loading from a PostgreSQL database, the following options are supported, and the default WITH clause is: no
truncate, create schema, create tables, include drop, create indexes, reset sequences, foreign keys, downcase identi-
fiers, uniquify index names, reindex.

• include drop

When this option is listed, pgloader drops all the tables in the target PostgreSQL database whose names appear
in the MySQL database. This option allows for using the same command several times in a row until you figure
out all the options, starting automatically from a clean environment. Please note that CASCADE is used to
ensure that tables are dropped even if there are foreign keys pointing to them. This is precisely what include
drop is intended to do: drop all target tables and recreate them.

Great care needs to be taken when using include drop, as it will cascade to all objects referencing the target
tables, possibly including other tables that are not being loaded from the source DB.

• include no drop

When this option is listed, pgloader will not include any DROP statement when loading the data.

• truncate

When this option is listed, pgloader issue the TRUNCATE command against each PostgreSQL table just before
loading data into it.

• no truncate

When this option is listed, pgloader issues no TRUNCATE command.

• disable triggers

When this option is listed, pgloader issues an ALTER TABLE . . . DISABLE TRIGGER ALL command against
the PostgreSQL target table before copying the data, then the command ALTER TABLE . . . ENABLE TRIGGER
ALL once the COPY is done.

66 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

This option allows loading data into a pre-existing table ignoring the foreign key constraints and user defined
triggers and may result in invalid foreign key constraints once the data is loaded. Use with care.

• create tables

When this option is listed, pgloader creates the table using the meta data found in the MySQL file, which must
contain a list of fields with their data type. A standard data type conversion from DBF to PostgreSQL is done.

• create no tables

When this option is listed, pgloader skips the creation of table before loading data, target tables must then
already exist.

Also, when using create no tables pgloader fetches the metadata from the current target database and checks
type casting, then will remove constraints and indexes prior to loading the data and install them back again once
the loading is done.

• create indexes

When this option is listed, pgloader gets the definitions of all the indexes found in the MySQL database and
create the same set of index definitions against the PostgreSQL database.

• create no indexes

When this option is listed, pgloader skips the creating indexes.

• drop indexes

When this option is listed, pgloader drops the indexes in the target database before loading the data, and creates
them again at the end of the data copy.

• reindex

When this option is used, pgloader does both drop indexes before loading the data and create indexes once data
is loaded.

• drop schema

When this option is listed, pgloader drops the target schema in the target PostgreSQL database before creating
it again and all the objects it contains. The default behavior doesn’t drop the target schemas.

• foreign keys

When this option is listed, pgloader gets the definitions of all the foreign keys found in the MySQL database
and create the same set of foreign key definitions against the PostgreSQL database.

• no foreign keys

When this option is listed, pgloader skips creating foreign keys.

• reset sequences

When this option is listed, at the end of the data loading and after the indexes have all been created, pgloader
resets all the PostgreSQL sequences created to the current maximum value of the column they are attached to.

The options schema only and data only have no effects on this option.

• reset no sequences

When this option is listed, pgloader skips resetting sequences after the load.

The options schema only and data only have no effects on this option.

• downcase identifiers

When this option is listed, pgloader converts all MySQL identifiers (table names, index names, column names)
to downcase, except for PostgreSQL reserved keywords.

1.3. Continuous Migration 67

pgloader Documentation, Release 3.6.8

The PostgreSQL reserved keywords are determined dynamically by using the system function
pg_get_keywords().

• quote identifiers

When this option is listed, pgloader quotes all MySQL identifiers so that their case is respected. Note that you
will then have to do the same thing in your application code queries.

• schema only

When this option is listed pgloader refrains from migrating the data over. Note that the schema in this context
includes the indexes when the option create indexes has been listed.

• data only

When this option is listed pgloader only issues the COPY statements, without doing any other processing.

• rows per range

How many rows are fetched per SELECT query when using multiple readers per thread, see above for details.

PostgreSQL Database Casting Rules

The command CAST introduces user-defined casting rules.

The cast clause allows to specify custom casting rules, either to overload the default casting rules or to amend them
with special cases.

A casting rule is expected to follow one of the forms:

type <type-name> [<guard> ...] to <pgsql-type-name> [<option> ...]
column <table-name>.<column-name> [<guards>] to ...

It’s possible for a casting rule to either match against a PostgreSQL data type or against a given column name in a
given table name. So it’s possible to migrate a table from a PostgreSQL database while changing and int column to a
bigint one, automatically.

The casting rules are applied in order, the first match prevents following rules to be applied, and user defined rules are
evaluated first.

The supported guards are:

• when default ‘value’

The casting rule is only applied against MySQL columns of the source type that have given value, which must
be a single-quoted or a double-quoted string.

• when typemod expression

The casting rule is only applied against MySQL columns of the source type that have a typemod value matching
the given typemod expression. The typemod is separated into its precision and scale components.

Example of a cast rule using a typemod guard:

type char when (= precision 1) to char keep typemod

This expression casts MySQL char(1) column to a PostgreSQL column of type char(1) while allowing for the
general case char(N) will be converted by the default cast rule into a PostgreSQL type varchar(N).

• with extra auto_increment

The casting rule is only applied against PostgreSQL attached to a sequence. This can be the result of doing that
manually, using a serial or a bigserial data type, or an identity column.

68 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

The supported casting options are:

• drop default, keep default

When the option drop default is listed, pgloader drops any existing default expression in the MySQL database
for columns of the source type from the CREATE TABLE statement it generates.

The spelling keep default explicitly prevents that behaviour and can be used to overload the default casting rules.

• drop not null, keep not null, set not null

When the option drop not null is listed, pgloader drops any existing NOT NULL constraint associated with the
given source MySQL datatype when it creates the tables in the PostgreSQL database.

The spelling keep not null explicitly prevents that behaviour and can be used to overload the default casting
rules.

When the option set not null is listed, pgloader sets a NOT NULL constraint on the target column regardless
whether it has been set in the source MySQL column.

• drop typemod, keep typemod

When the option drop typemod is listed, pgloader drops any existing typemod definition (e.g. precision and
scale) from the datatype definition found in the MySQL columns of the source type when it created the tables
in the PostgreSQL database.

The spelling keep typemod explicitly prevents that behaviour and can be used to overload the default casting
rules.

• using

This option takes as its single argument the name of a function to be found in the pgloader.transforms Common
Lisp package. See above for details.

It’s possible to augment a default cast rule (such as one that applies against ENUM data type for example) with
a transformation function by omitting entirely the type parts of the casting rule, as in the following example:

column enumerate.foo using empty-string-to-null

PostgreSQL Views Support

PostgreSQL views support allows pgloader to migrate view as if they were base tables. This feature then allows for
on-the-fly transformation of the source schema, as the view definition is used rather than the base data.

MATERIALIZE VIEWS

This clause allows you to implement custom data processing at the data source by providing a view definition against
which pgloader will query the data. It’s not possible to just allow for plain SQL because we want to know a lot about
the exact data types of each column involved in the query output.

This clause expect a comma separated list of view definitions, each one being either the name of an existing view in
your database or the following expression:

name `AS` `$$` *sql query* `$$`

The name and the sql query will be used in a CREATE VIEW statement at the beginning of the data loading, and the
resulting view will then be dropped at the end of the data loading.

1.3. Continuous Migration 69

pgloader Documentation, Release 3.6.8

MATERIALIZE ALL VIEWS

Same behaviour as MATERIALIZE VIEWS using the dynamic list of views as returned by PostgreSQL rather than
asking the user to specify the list.

PostgreSQL Partial Migration

INCLUDING ONLY TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expression used to limit the tables to migrate to a sublist.

Example:

including only table names matching ~/film/, 'actor' in schema 'public'

EXCLUDING TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expression used to exclude table names from the migration.
This filter only applies to the result of the INCLUDING filter.

excluding table names matching ~<ory> in schema 'public'

PostgreSQL Schema Transformations

ALTER TABLE NAMES MATCHING

Introduce a comma separated list of table names or regular expressions that you want to target in the pgloader ALTER
TABLE command. Available actions are SET SCHEMA, RENAME TO, and SET:

ALTER TABLE NAMES MATCHING ~/_list$/, 'sales_by_store', ~/sales_by/
IN SCHEMA 'public'

SET SCHEMA 'mv'

ALTER TABLE NAMES MATCHING 'film' IN SCHEMA 'public' RENAME TO 'films'

ALTER TABLE NAMES MATCHING ~/./ IN SCHEMA 'public' SET (fillfactor='40')

ALTER TABLE NAMES MATCHING ~/./ IN SCHEMA 'public' SET TABLESPACE 'pg_default'

You can use as many such rules as you need. The list of tables to be migrated is searched in pgloader memory against
the ALTER TABLE matching rules, and for each command pgloader stops at the first matching criteria (regexp or
string).

No ALTER TABLE command is sent to PostgreSQL, the modification happens at the level of the pgloader in-memory
representation of your source database schema. In case of a name change, the mapping is kept and reused in the foreign
key and index support.

The SET () action takes effect as a WITH clause for the CREATE TABLE command that pgloader will run when it has
to create a table.

The SET TABLESPACE action takes effect as a TABLESPACE clause for the CREATE TABLE command that pgloader
will run when it has to create a table.

70 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

PostgreSQL Migration: limitations

The only PostgreSQL objects supported at this time in pgloader are extensions, schema, tables, indexes and constraints.
Anything else is ignored.

• Views are not migrated,

Supporting views might require implementing a full SQL parser for the MySQL dialect with a porting engine to
rewrite the SQL against PostgreSQL, including renaming functions and changing some constructs.

While it’s not theoretically impossible, don’t hold your breath.

• Triggers are not migrated

The difficulty of doing so is not yet assessed.

• Stored Procedures and Functions are not migrated.

Default PostgreSQL Casting Rules

When migrating from PostgreSQL the following Casting Rules are provided:

type int with extra auto_increment to serial
type bigint with extra auto_increment to bigserial
type "character varying" to text drop typemod

1.3.16 Migrating a PostgreSQL Database to Citus

This command instructs pgloader to load data from a database connection. Automatic discovery of the schema is
supported, including build of the indexes, primary and foreign keys constraints. A default set of casting rules are
provided and might be overloaded and appended to by the command.

Automatic distribution column backfilling is supported, either from commands that specify what is the distribution col-
umn in every table, or only in the main table, then relying on foreign key constraints to discover the other distribution
keys.

Here’s a short example of migrating a database from a PostgreSQL server to another:

load database
from pgsql:///hackathon
into pgsql://localhost:9700/dim

with include drop, reset no sequences

cast column impressions.seen_at to "timestamp with time zone"

distribute companies using id
-- distribute campaigns using company_id
-- distribute ads using company_id from campaigns
-- distribute clicks using company_id from ads, campaigns
-- distribute impressions using company_id from ads, campaigns
;

Everything works exactly the same way as when doing a PostgreSQL to PostgreSQL migration, with the added fonc-
tionality of this new distribute command.

1.3. Continuous Migration 71

pgloader Documentation, Release 3.6.8

Distribute Command

The distribute command syntax is as following:

distribute <table name> using <column name>
distribute <table name> using <column name> from <table> [, <table>, ...]
distribute <table name> as reference table

When using the distribute command, the following steps are added to pgloader operations when migrating the schema:

• if the distribution column does not exist in the table, it is added as the first column of the table

• if the distribution column does not exists in the primary key of the table, it is added as the first column of the
primary of the table

• all the foreign keys that point to the table are added the distribution key automatically too, including the source
tables of the foreign key constraints

• once the schema has been created on the target database, pgloader then issues Citus specific command cre-
ate_reference_table() and create_distributed_table() to make the tables distributed

Those operations are done in the schema section of pgloader, before the data is loaded. When the data is loaded, the
newly added columns need to be backfilled from referenced data. pgloader knows how to do that by generating a query
like the following and importing the result set of such a query rather than the raw data from the source table.

Citus Migration Example

With the migration command as above, pgloader adds the column company_id to the tables that have a direct or
indirect foreign key reference to the companies table.

We run pgloader using the following command, where the file ./test/citus/company.load contains the pgloader com-
mand as shown above.

$ pgloader --client-min-messages sql ./test/citus/company.load

The following SQL statements are all extracted from the log messages that the pgloader command outputs. We are
going to have a look at the impressions table. It gets created with a new column company_id in the first position, as
follows:

CREATE TABLE "public"."impressions"
(

company_id bigint,
"id" bigserial,
"ad_id" bigint default NULL,
"seen_at" timestamp with time zone default NULL,
"site_url" text default NULL,
"cost_per_impression_usd" numeric(20,10) default NULL,
"user_ip" inet default NULL,
"user_data" jsonb default NULL

);

The original schema for this table does not have the company_id column, which means pgloader now needs to change
the primary key definition, the foreign keys constraints definitions from and to this table, and also to backfill the
company_id data to this table when doing the COPY phase of the migration.

Then once the tables have been created, pgloader executes the following SQL statements:

72 Chapter 1. Features Overview

http://docs.citusdata.com/en/v8.0/develop/api_udf.html?highlight=create_reference_table#create-reference-table
http://docs.citusdata.com/en/v8.0/develop/api_udf.html?highlight=create_reference_table#create-reference-table
http://docs.citusdata.com/en/v8.0/develop/api_udf.html?highlight=create_reference_table#create-distributed-table
https://github.com/dimitri/pgloader/blob/master/test/citus/company.load

pgloader Documentation, Release 3.6.8

SELECT create_distributed_table('"public"."companies"', 'id');
SELECT create_distributed_table('"public"."campaigns"', 'company_id');
SELECT create_distributed_table('"public"."ads"', 'company_id');
SELECT create_distributed_table('"public"."clicks"', 'company_id');
SELECT create_distributed_table('"public"."impressions"', 'company_id');

Then when copying the data from the source PostgreSQL database to the new Citus tables, the new column (here
company_id) needs to be backfilled from the source tables. Here’s the SQL query that pgloader uses as a data
source for the ads table in our example:

SELECT "campaigns".company_id::text, "ads".id::text, "ads".campaign_id::text,
"ads".name::text, "ads".image_url::text, "ads".target_url::text,
"ads".impressions_count::text, "ads".clicks_count::text,
"ads".created_at::text, "ads".updated_at::text

FROM "public"."ads"
JOIN "public"."campaigns"
ON ads.campaign_id = campaigns.id

The impressions table has an indirect foreign key reference to the company table, which is the table where the
distribution key is specified. pgloader will discover that itself from walking the PostgreSQL catalogs, and you may
also use the following specification in the pgloader command to explicitely add the indirect dependency:

distribute impressions using company_id from ads, campaigns

Given this schema, the SQL query used by pgloader to fetch the data for the impressions table is the following,
implementing online backfilling of the data:

SELECT "campaigns".company_id::text, "impressions".id::text,
"impressions".ad_id::text, "impressions".seen_at::text,
"impressions".site_url::text,
"impressions".cost_per_impression_usd::text,
"impressions".user_ip::text,
"impressions".user_data::text

FROM "public"."impressions"

JOIN "public"."ads"
ON impressions.ad_id = ads.id

JOIN "public"."campaigns"
ON ads.campaign_id = campaigns.id

When the data copying is done, then pgloader also has to install the indexes supporting the primary keys, and add
the foreign key definitions to the schema. Those definitions are not the same as in the source schema, because of the
adding of the distribution column to the table: we need to also add the column to the primary key and the foreign key
constraints.

Here’s the commands issued by pgloader for the impressions table:

CREATE UNIQUE INDEX "impressions_pkey"
ON "public"."impressions" (company_id, id);

ALTER TABLE "public"."impressions"
ADD CONSTRAINT "impressions_ad_id_fkey"

FOREIGN KEY(company_id,ad_id)
REFERENCES "public"."ads"(company_id,id)

1.3. Continuous Migration 73

pgloader Documentation, Release 3.6.8

Given a single line of specification distribute companies using id then pgloader implements all the nec-
essary schema changes on the fly when migrating to Citus, and also dynamically backfills the data.

Citus Migration: Limitations

The way pgloader implements reset sequence does not work with Citus at this point, so sequences need to be taken
care of separately at this point.

1.3.17 Support for Redshift in pgloader

The command and behavior are the same as when migration from a PostgreSQL database source, see Migrating a
PostgreSQL Database to PostgreSQL. pgloader automatically discovers that it’s talking to a Redshift database by
parsing the output of the SELECT version() SQL query.

Redshift as a data source

Redshift is a variant of PostgreSQL version 8.0.2, which allows pgloader to work with only a very small amount of
adaptation in the catalog queries used. In other words, migrating from Redshift to PostgreSQL works just the same as
when migrating from a PostgreSQL data source, including the connection string specification.

Redshift as a data destination

The Redshift variant of PostgreSQL 8.0.2 does not have support for the COPY FROM STDIN feature that pgloader
normally relies upon. To use COPY with Redshift, the data must first be made available in an S3 bucket.

First, pgloader must authenticate to Amazon S3. pgloader uses the following setup for that:

• ~/.aws/config

This INI formatted file contains sections with your default region and other global values relevant to using the
S3 API. pgloader parses it to get the region when it’s setup in the default INI section.

The environment variable AWS_DEFAULT_REGION can be used to override the configuration file value.

• ~/.aws/credentials

The INI formatted file contains your authentication setup to Amazon, with the properties
aws_access_key_id and aws_secret_access_key in the section default. pgloader parses
this file for those keys, and uses their values when communicating with Amazon S3.

The environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY can be used to over-
ride the configuration file

• AWS_S3_BUCKET_NAME

Finally, the value of the environment variable AWS_S3_BUCKET_NAME is used by pgloader as the name of the
S3 bucket where to upload the files to COPY to the Redshift database. The bucket name defaults to pgloader.

Then pgloader works as usual, see the other sections of the documentation for the details, depending on the data source
(files, other databases, etc). When preparing the data for PostgreSQL, pgloader now uploads each batch into a single
CSV file, and then issue such as the following, for each batch:

COPY <target_table_name>
FROM 's3://<s3 bucket>/<s3-filename-just-uploaded>'
FORMAT CSV
TIMEFORMAT 'auto'

(continues on next page)

74 Chapter 1. Features Overview

pgloader Documentation, Release 3.6.8

(continued from previous page)

REGION '<aws-region>'
ACCESS_KEY_ID '<aws-access-key-id>'
SECRET_ACCESS_KEY '<aws-secret-access-key>;

This is the only difference with a PostgreSQL core version, where pgloader can rely on the classic COPY FROM
STDIN command, which allows to send data through the already established connection to PostgreSQL.

1.3.18 Transformation Functions

Some data types are implemented in a different enough way that a transformation function is necessary. This function
must be written in Common lisp and is searched in the pgloader.transforms package.

Some default transformation function are provided with pgloader, and you can use the –load command line option to
load and compile your own lisp file into pgloader at runtime. For your functions to be found, remember to begin your
lisp file with the following form:

(in-package #:pgloader.transforms)

The provided transformation functions are:

• zero-dates-to-null

When the input date is all zeroes, return nil, which gets loaded as a PostgreSQL NULL value.

• date-with-no-separator

Applies zero-dates-to-null then transform the given date into a format that PostgreSQL will actually process:

In: "20041002152952"
Out: "2004-10-02 15:29:52"

• time-with-no-separator

Transform the given time into a format that PostgreSQL will actually process:

In: "08231560"
Out: "08:23:15.60"

• tinyint-to-boolean

As MySQL lacks a proper boolean type, tinyint is often used to implement that. This function transforms 0 to
‘false’ and anything else to ‘true’.

• bits-to-boolean

As MySQL lacks a proper boolean type, BIT is often used to implement that. This function transforms 1-bit bit
vectors from 0 to f and any other value to t..

• int-to-ip

Convert an integer into a dotted representation of an ip4.

In: 18435761
Out: "1.25.78.177"

• ip-range

Converts a couple of integers given as strings into a range of ip4.

1.3. Continuous Migration 75

pgloader Documentation, Release 3.6.8

In: "16825344" "16825599"
Out: "1.0.188.0-1.0.188.255"

• convert-mysql-point

Converts from the astext representation of points in MySQL to the PostgreSQL representation.

In: "POINT(48.5513589 7.6926827)"
Out: "(48.5513589,7.6926827)"

• integer-to-string

Converts a integer string or a Common Lisp integer into a string suitable for a PostgreSQL integer. Takes care
of quoted integers.

In: "\"0\""
Out: "0"

• float-to-string

Converts a Common Lisp float into a string suitable for a PostgreSQL float:

In: 100.0d0
Out: "100.0"

• hex-to-dec

Converts a string containing an hexadecimal representation of a number into its decimal representation:

In: "deadbeef"
Out: "3735928559"

• set-to-enum-array

Converts a string representing a MySQL SET into a PostgreSQL Array of Enum values from the set.

In: "foo,bar"
Out: "{foo,bar}"

• empty-string-to-null

Convert an empty string to a null.

• right-trim

Remove whitespace at end of string.

• remove-null-characters

Remove NUL characters (0x0) from given strings.

• byte-vector-to-bytea

Transform a simple array of unsigned bytes to the PostgreSQL bytea Hex Format representation as documented
at http://www.postgresql.org/docs/9.3/interactive/datatype-binary.html

• sqlite-timestamp-to-timestamp

SQLite type system is quite interesting, so cope with it here to produce timestamp literals as expected by Post-
greSQL. That covers year only on 4 digits, 0 dates to null, and proper date strings.

76 Chapter 1. Features Overview

http://www.postgresql.org/docs/9.3/interactive/datatype-binary.html

pgloader Documentation, Release 3.6.8

• sql-server-uniqueidentifier-to-uuid

The SQL Server driver receives data fo type uniqueidentifier as byte vector that we then need to convert to an
UUID string for PostgreSQL COPY input format to process.

• unix-timestamp-to-timestamptz

Converts a unix timestamp (number of seconds elapsed since beginning of 1970) into a proper PostgreSQL
timestamp format.

• varbinary-to-string

Converts binary encoded string (such as a MySQL varbinary entry) to a decoded text, using the table’s encoding
that may be overloaded with the DECODING TABLE NAMES MATCHING clause.

1.3.19 Reporting Bugs

pgloader is a software and as such contains bugs. Most bugs are easy to solve and taken care of in a short delay. For
this to be possible though, bug reports need to follow those recommandations:

• include pgloader version,

• include problematic input and output,

• include a description of the output you expected,

• explain the difference between the ouput you have and the one you expected,

• include a self-reproducing test-case

Test Cases to Reproduce Bugs

Use the inline source type to help reproduce a bug, as in the pgloader tests:

LOAD CSV
FROM INLINE
INTO postgresql://dim@localhost/pgloader?public."HS"

WITH truncate,
fields terminated by '\t',
fields not enclosed,
fields escaped by backslash-quote,
quote identifiers

SET work_mem to '128MB',
standard_conforming_strings to 'on',
application_name to 'my app name'

BEFORE LOAD DO
$$ create extension if not exists hstore; $$,
$$ drop table if exists "HS"; $$,
$$ CREATE TABLE "HS"

(
id serial primary key,
kv hstore

)
$$;

(continues on next page)

1.3. Continuous Migration 77

pgloader Documentation, Release 3.6.8

(continued from previous page)

1 email=>foo@example.com,a=>b
2 test=>value
3 a=>b,c=>"quoted hstore value",d=>other
4 baddata

78 Chapter 1. Features Overview

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

79

	Features Overview
	Loading file content in PostgreSQL
	One-command migration to PostgreSQL
	Continuous Migration

	Indices and tables

